Skip to main content
  • Other Publications
    • Philosophical Transactions B
    • Proceedings B
    • Biology Letters
    • Open Biology
    • Philosophical Transactions A
    • Proceedings A
    • Royal Society Open Science
    • Interface
    • Interface Focus
    • Notes and Records
    • Biographical Memoirs

Advanced

  • Home
  • Content
    • Latest issue
    • Forthcoming
    • All content
    • Subject collections
    • Videos
  • Information for
    • Authors
    • Guest editors
    • Reviewers
    • Readers
    • Institutions
  • About us
    • About the journal
    • Editorial board
    • Policies
    • Citation metrics
    • Open access
  • Sign up
    • Subscribe
    • eTOC alerts
    • Keyword alerts
    • RSS feeds
    • Newsletters
    • Request a free trial
  • Propose an issue
You have accessRestricted access

IV. On the residues of powers of numbers any composite modulus, real or complex

Geoffrey T. Bennett, B. A.
Published 1 January 1893.DOI: 10.1098/rsta.1893.0004
Geoffrey Thomas Bennett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Extract

The present work consists of two. parts, with an appendix to the second. Part I. deals with real numbers, Part II. with complex. In the simple cases when the modulus is a real number, which is an odd prime, a power of an odd prime, or double the power of an odd prime, we know that there exist primitive roots of the modulus ; that is, that there are numbers whose successive powers have for their residues the complete set of numbers less than and prime to the modulus. A primitive root may be said to generate by its successive powers the complete set of residues. It is also known that, in general, when the modulus is any composite number, though primitive roots do not exist, there may be laid down a set of numbers which will here be called g, the products of powers of which give the complete set of residues prime to the modulus.

Footnotes

  • This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.

  • Received April 8, 1892.
  • Scanned images copyright © 2017, Royal Society
PreviousNext
Back to top
PreviousNext
1 January 1893
Volume 184
  • Table of Contents
Share
IV. On the residues of powers of numbers any composite modulus, real or complex
Geoffrey T. Bennett, B. A.
Phil. Trans. R. Soc. Lond. A 1893 184 189-336; DOI: 10.1098/rsta.1893.0004. Published 1 January 1893
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Email

Thank you for your interest in spreading the word on Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
IV. On the residues of powers of numbers any composite modulus, real or complex
(Your Name) has sent you a message from Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(Your Name) thought you would like to see the Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences web site.
Print
Manage alerts

Please log in to add an alert for this article.

Sign In to Email Alerts with your Email Address
Citation tools

IV. On the residues of powers of numbers any composite modulus, real or complex

Geoffrey T. Bennett, B. A.
Phil. Trans. R. Soc. Lond. A 1893 184 189-336; DOI: 10.1098/rsta.1893.0004. Published 1 January 1893

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Download

Article reuse

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related articles

Cited by

Celebrating 350 years of Philosophical Transactions

Anniversary issue with free commentaries, archive material, videos and blogs.

Open biology

  • PHILOSOPHICAL TRANSACTIONS A
    • About this journal
    • Contact information
    • Purchasing information
    • Propose an issue
    • Open access membership
    • Recommend to your library
    • FAQ
    • Help

Royal society publishing

  • ROYAL SOCIETY PUBLISHING
    • Our journals
    • Open access
    • Publishing policies
    • Conferences
    • Podcasts
    • News
    • Blog
    • Manage your account
    • Terms & conditions
    • Cookies

The royal society

  • THE ROYAL SOCIETY
    • About us
    • Contact us
    • Fellows
    • Events
    • Grants, schemes & awards
    • Topics & policy
    • Collections
    • Venue hire
1471-2962

Copyright © 2018 The Royal Society