Abstract
Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials including biological proteins, quantum structures and nanocomposite materials. In this paper, we describe microscopic techniques which rely on the enhanced electric field near a sharp, laser–irradiated metal tip. This confined light–source can be used for the excitation of various optical interactions such as two–photon excited fluorescence or Raman scattering. We study the properties of the enhanced fields and demonstrate fluorescence and Raman imaging with sub–20 nm resolution.
Royal Society Login
Sign in for Fellows of the Royal Society
Fellows: please access the online journals via the Fellows’ Room
Not a subscriber? Request a free trial
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.
Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.















