Abstract
Core-collapse supernovae (CCSNe) are the explosions that attend the deaths of massive stars. Despite decades of research, several aspects of the mechanism that drives these explosions remain uncertain and the subjects of continued investigation. In this short review, I will give an overview of the CCSN mechanism and current research in the field. In particular, I will focus on recent results from three-dimensional simulations and the impact of turbulence and detailed non-spherical progenitor structure on CCSNe. This contribution is based on a talk given at the ‘Bridging the Gap’ workshop at Chicheley Hall on 2 June 2016.
This article is part of the themed issue ‘Bridging the gap: from massive stars to supernovae’.
Footnotes
One contribution of 9 to a Theo Murphy meeting issue ‘Bridging the gap: from massive stars to supernovae’.
- Accepted August 1, 2017.
- © 2017 The Author(s)
Published by the Royal Society. All rights reserved.
Sign in for Fellows of the Royal Society
Fellows: please access the online journals via the Fellows’ Room
Not a subscriber? Request a free trial
Log in using your username and password
Log in through your institution
Pay Per Article - You may access this article or this issue (from the computer you are currently using) for 30 days.
Regain Access - You can regain access to a recent Pay per Article or Pay per Issue purchase if your access period has not yet expired.