Compressibility of water in magma and the prediction of density crossovers in mantle differentiation

By Carl B. Agee*

Institute of Meteoritics, and Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA

Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (<2 GPa); however, at higher pressures, this difference is greatly reduced and becomes very small at pressures above 5 GPa. This implies that the pressure effect on the partial molar volume of water in silicate melt (∂V_⊂ðH₂O)/∂P) is highly dependent on pressure regime. Thus, H₂O can be thought of as the most compressible ‘liquid oxide’ component in silicate melt at low pressure, but at high pressure its compressibility resembles that of other liquid oxide components. A best-fit curve to the data on V_⊂ðH₂O from various studies allows calculation of hydrous melt compression curves relevant to high-pressure planetary differentiation. From these compression curves, crystal–liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410 km discontinuity, and, although not required to be hydrous, atop the core–mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200 km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.

Keywords: mantle differentiation; magma ocean; high pressure; water

1. Introduction

‘Density crossovers’ occur between silicate liquids and their coexisting equilibrium crystalline phases when compression curves of the liquids and the crystals intersect at high pressure. This can occur between certain crystal–liquid pairs because the compressibilities of silicate liquids are higher than those of silicate crystals, and at high enough pressures the compression curves ‘cross over’. This phenomenon has been confirmed experimentally by numerous studies over the past 25 years (Rigden et al. 1984, 1989; Agee & Walker 1988b, 1993; 1996).

*agee@unm.edu

One contribution of 14 to a Discussion Meeting Issue ‘Origin and differentiation of the Earth: past to present’.
Miller et al. 1991a; Suzuki et al. 1995; Circone & Agee 1996; Smith & Agee 1997; Agee 1998; Ohtani & Maeda 2001). There are also examples in geologically interesting systems where silicate crystals float in their equilibrium silicate liquids at 1 bar, such as plagioclase flotation in lunar basalt (Walker & Hays 1977) and flotation of liquidus olivine in melts on the forsterite–fayalite join (Herzberg et al. 1982); however, these will not be discussed further in this paper, and I will focus only on crystal flotation due to high pressure.

Density crossovers may have important implications for the Earth and planetary differentiation scenarios (Stolper et al. 1981; Nisbet & Walker 1982; Herzberg 1984; Ohtani 1984, 1985; Agee & Walker 1988a; Delano 1990; Miller et al. 1991b), especially within a magma ocean environment, where temperatures are assumed to be high enough for wholesale melting of anhydrous mantle to occur at great depths and very high pressures. For the modern Earth, with a more modest geotherm, deep mantle melting is probably restricted to heterogeneous regions with thermal boundary layers such as the core–mantle boundary (CMB) and its proposed ultra-low-velocity zones (ULVZ; Williams & Garnero 1996; Vidale & Hedlin 1998; Berryman 2000; Rost et al. 2005) or regions where the mantle solidus has been lowered by the presence of water such as atop the 410 km discontinuity (Nolet & Zielhuis 1994; Revenaugh & Sipkin 1994; Bercovici & Karato 2003; Leahy & Bercovici 2007; Toffelmier & Tyburczy 2007).

Hydrous density crossovers are not predictable from experimental data on anhydrous melts. For example, we expect that the density of hydrous melts will be lower than for anhydrous melts (Ochs & Lange 1999), but the details of whether hydrous melts will be more compressible with a smaller isothermal bulk modulus (K_T), or whether the pressure effect on the bulk modulus (K') will be the same, or larger or smaller, need independent experimental testing. How any of these differences will affect the location of density crossovers also needs confirmation. To answer these questions, I refer to three recent experimental studies that address the issue of hydrous melt density and compressibility at high pressure (Matsukage et al. 2005; Sakamaki et al. 2006; Agee 2008), and pioneering work on hydrous melts and glasses at low pressure (Burnham & Davis 1971; Ochs & Lange 1999). From these data, I derive the effect of pressure on the partial molar volume of H$_2$O in silicate melt (V_{H_2O}) and predict the existence of crystal–liquid density crossovers for hydrous magmas in the mantles of the Earth and Mars.

2. Partial molar volume of water in silicate liquid at high pressure

Bottinga & Weill (1970) showed that partial molar volumes of silicate liquids can be treated as constants over a compositional range of 40–80 mol% SiO$_2$, although data on linear mixing at high pressure are, at this time, incomplete. Therefore, the density (ρ) of a silicate liquid can be expressed as

$$\rho = \sum_i \frac{X_i M_i}{X_i V_i},$$

where X_i is the mole fraction of component i; V_i is its partial molar volume; and M_i is its gram formula weight (gfw; also relative molar mass). The components are also referred to as ‘liquid oxides’ and include SiO$_2$, Al$_2$O$_3$, FeO, MgO, CaO,
Na$_2$O, etc. In hydrous silicate liquids, H$_2$O can also be considered as one of the dissolved liquid oxide components. Therefore, the difference between the density of anhydrous silicate liquid and hydrous silicate liquid of the same composition at P and T is determined by the value of the partial molar volume of water and its mole fraction in the hydrous liquid.

Figure 1a shows data from various studies that measured the density of hydrous silicate glasses and liquids. The experiments were performed over a wide temperature range (800–2300°C) and are uncorrected for the effect of thermal expansion on \tilde{V}_{H_2O}. The data point of Matsukage is from their estimate of \tilde{V}_{H_2O} based on four experiments at 1900°C and $p=10$–16.2 GPa. See Table 1 for details. (b) Pressure versus \tilde{V}_{H_2O} diagram with the data from (a) normalized to 1800°C using the effect of thermal expansion on \tilde{V}_{H_2O} at high pressure from Burnham & Davis (1971) (see text). The Ochs & Lange (1999) 1 bar density was corrected for thermal expansion with $\frac{\partial \tilde{V}_{H_2O}}{\partial P} = 0.00946 \text{ cm}^3 \text{ mol}^{-1} \text{ K}^{-1}$.

In hydrous silicate liquids, H$_2$O can also be considered as one of the dissolved liquid oxide components. Therefore, the difference between the density of anhydrous silicate liquid and hydrous silicate liquid of the same composition at P and T is determined by the value of the partial molar volume of water and its mole fraction in the hydrous liquid.

Figure 1a shows data from various studies that measured the density of hydrous silicate liquids or glasses at low and high pressures, and from which we cite or derive values for \tilde{V}_{H_2O}, uncorrected for thermal expansion. The experimental densities were measured on hydrous silicate glasses near the glass transition temperature at 1 bar with dilatometry (Ochs & Lange 1999), on hydrous albite melt up to 0.85 GPa in an internally heated, gas pressurized, P–V–T vessel (Burnham & Davis 1971), on hydrous FeO-rich komatiite melt at 1.5–9 GPa in a piston–cylinder and multi-anvil apparatus using the sink/float technique (Agee 2008), on hydrous FeO-rich ultrabasic melt at 10–16 GPa (Matsukage et al. 2005) and on molten hydrous mid-ocean ridge basalts (MORB) (Sakamaki et al. 2006) in a multi-anvil apparatus using the sink/float technique. The highest temperatures (2300°C) were in the high-pressure data from Sakamaki et al. (2006) and the lowest temperatures (800°C) were from Burnham & Davis (1971). The values of \tilde{V}_{H_2O} from Burnham & Davis (1971) and Ochs & Lange (1999) are adopted directly from their tables and graphs, whereas those from Sakamaki et al. (2006) and Agee (2008) are derived from the difference in density between anhydrous and hydrous liquids of the same composition, respectively, at high P and T, using the relationship

$$\tilde{V}_{H_2O}^{P,T} = \left\{ \left(\sum_i X_i M_i + X_{H_2O} M_{H_2O} \right) / \rho_{hyd}^{P,T} - \sum_i X_i \tilde{V}_i^{P,T} \right\} / X_{H_2O},$$

where $\sum_i \tilde{V}_i^{P,T} = \sum_i (M_i X_i / \rho_{anhyd}^{P,T} X_i)$ and $\sum_i X_i = 1 - X_{H_2O}$.

Phil. Trans. R. Soc. A (2008)
Table 1. Data from various experiments (see text and figure 1 for full references).

<table>
<thead>
<tr>
<th>experiment</th>
<th>source</th>
<th>pressure (GPa)</th>
<th>temp (°C)</th>
<th>$\rho_{P,T}^{\text{anhyd}}$ (g cm$^{-3}$)</th>
<th>$\rho_{P,T}^{\text{hyd}}$ (g cm$^{-3}$)</th>
<th>$X_{\text{H}_2\text{O}}$ (mol. fract.)</th>
<th>X_i (mol. fract.)</th>
<th>$M_{\text{H}_2\text{O}}$ (gfw mol. fract.)</th>
<th>M_i (gfw mol. fract.)</th>
<th>$\bar{V}_{i}^{P,T}$ (cm^3 mol$^{-1}$)</th>
<th>$\bar{V}_{\text{H}_2\text{O}}^{P,T}$ (cm^3 mol$^{-1}$)</th>
<th>$\bar{V}_{\text{H}_2\text{O}}^{P,1800}$ (cm^3 mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diamond in MORB melt</td>
<td>Sakamaki et al.</td>
<td>16.8</td>
<td>2300</td>
<td>3.598</td>
<td>3.550</td>
<td>0.066</td>
<td>0.934</td>
<td>1.19</td>
<td>58.20</td>
<td>16.18</td>
<td>8.18</td>
<td>7.67</td>
</tr>
<tr>
<td>diamond in MORB melt</td>
<td>Sakamaki et al.</td>
<td>20.0</td>
<td>2200</td>
<td>3.743</td>
<td>3.580</td>
<td>0.231</td>
<td>0.769</td>
<td>4.16</td>
<td>47.93</td>
<td>12.80</td>
<td>6.97</td>
<td>6.63</td>
</tr>
<tr>
<td>diamond in Fe-rich silicate melts</td>
<td>Matsukage et al.</td>
<td>14.0</td>
<td>1900</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>8.00</td>
<td>7.88</td>
</tr>
<tr>
<td>garnet in Fe-rich komatiite melt</td>
<td>Agee</td>
<td>7.9</td>
<td>1800</td>
<td>3.72</td>
<td>3.663</td>
<td>0.066</td>
<td>0.934</td>
<td>1.19</td>
<td>58.03</td>
<td>15.60</td>
<td>8.37</td>
<td>8.37</td>
</tr>
<tr>
<td>garnet in Fe-rich komatiite melt</td>
<td>Agee</td>
<td>7.5</td>
<td>1750</td>
<td>3.695</td>
<td>3.645</td>
<td>0.066</td>
<td>0.934</td>
<td>1.19</td>
<td>58.03</td>
<td>15.71</td>
<td>8.00</td>
<td>8.11</td>
</tr>
<tr>
<td>olivine in Fe-rich komatiite melt</td>
<td>Agee</td>
<td>3.49</td>
<td>1500</td>
<td>3.45</td>
<td>3.207</td>
<td>0.156</td>
<td>0.844</td>
<td>2.81</td>
<td>52.54</td>
<td>15.23</td>
<td>11.87</td>
<td>13.10</td>
</tr>
<tr>
<td>olivine in Fe-rich komatiite melt</td>
<td>Agee</td>
<td>2.96</td>
<td>1500</td>
<td>3.413</td>
<td>3.188</td>
<td>0.156</td>
<td>0.844</td>
<td>2.81</td>
<td>52.54</td>
<td>15.39</td>
<td>11.54</td>
<td>12.95</td>
</tr>
<tr>
<td>olivine in Fe-rich komatiite melt</td>
<td>Agee</td>
<td>2.05</td>
<td>1500</td>
<td>3.341</td>
<td>3.099</td>
<td>0.156</td>
<td>0.844</td>
<td>2.81</td>
<td>52.54</td>
<td>15.73</td>
<td>12.44</td>
<td>14.32</td>
</tr>
<tr>
<td>hydrous albite melt</td>
<td>Burnham & Davis</td>
<td>0.85</td>
<td>950</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>16.50</td>
<td>27.42</td>
</tr>
<tr>
<td>hydrous glasses</td>
<td>Ochs & Lange</td>
<td>0.0001</td>
<td>1000</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>22.90</td>
<td>30.46</td>
</tr>
</tbody>
</table>
This was possible since both studies reported experimentally measured values of anhydrous and hydrous liquids of the same composition, which is a highly effective approach to the determination of V_{H_2O} at high pressure. Matsukage et al. (2005) did not measure the density of the anhydrous versions of their experimental liquids, and therefore we adopt the ‘estimated’ value of V_{H_2O} from that paper and assign the largest error bars to it. Grouping these data together implies that V_{H_2O} does not depend on silicate liquid composition, total water content and water speciation. This has been demonstrated by Ochs & Lange (1999) for polymerized and depolymerized silicate liquids, although it would be desirable to test this hypothesis over a wider melt composition range.

In figure 1b, I apply a correction for thermal expansion on V_{H_2O} from Burnham & Davis (1971), i.e.

$$V_{H_2O}^{1800} = V_{H_2O}^T - \Delta T \frac{dV_{H_2O}}{dT},$$

where $dV_{H_2O}/dT = 0.0178/(0.813 + P(GPa))$ and normalize the data to 1800°C. Because the thermal expansion of V_{H_2O} is assumed to decrease significantly with pressure, the corrected values at pressures above 10 GPa are very similar to the uncorrected values. On the other hand, the low-pressure and low-temperature data show a much larger difference in V_{H_2O} when corrected to 1800°C. Regardless of whether a thermal expansion correction is made or not, the data in figure 1a,b show a very strong pressure dependence for V_{H_2O} at pressures from 1 bar to approximately 3 GPa. Somewhere between approximately 3 and 7 GPa the change in V_{H_2O} with pressure decreases markedly. At pressures above 7 GPa, V_{H_2O} appears to change only very slightly with pressure. Table 1 gives all the data from the various studies discussed here.

The V_{H_2O} data are shown in figure 2a best-fitted to a three-parameter hyperbolic decay curve of the form

$$f = y_0 + \frac{ab}{b + x},$$

Figure 2. Pressure versus V_{H_2O} diagrams showing best fits to the data described by (a) a three-parameter hyperbolic decay curve and (b) the Vinet equation (solid curve), normalized to 1800°C. Also shown in (b) are earlier estimates of $\partial V_{H_2O}/\partial P$ from Burnham & Davis (1971) (dotted curve) and Ochs & Lange (1999) (dashed curve).
or, with fitted parameters,
\[V_{H_2O}^{1800.5} = 3.904 + \frac{27.905 \times 1.764}{1.764 + P(GPa)} \]

The best-fit curve intersects, within error bars, all the \(V_{H_2O} \) data points and describes well the very strong pressure effect on \(V_{H_2O} \) in the range 0–3 GPa and the weak pressure effect above 7 GPa. At very high pressures, the curve shows that \(V_{H_2O} \) is decreasing very slightly with pressure and approaches 3.904 cm\(^3\) mol\(^{-1}\) as \(P \to \infty \). This suggests that the compressibility of H\(_2\)O in magma has a distinctly different character at low pressure than at high pressure. At low pressure (0–3 GPa), H\(_2\)O is highly compressible compared with other silicate melt components; however, at high pressures above 7 GPa, H\(_2\)O compressibility is comparable with that of the other liquid oxides (Bottinga & Weill 1970; Lange & Carmichael 1987) that make up silicate melts. This hyperbolic decay curve is similar in shape to the Vinet equation (Vinet et al. 1989) fit to \(V_{H_2O} \) reported by Sakamaki et al. (2006), which was constrained by fewer data points. I also fit the data to the Vinet equation given by

\[
P = 3K_T \left(\frac{V_{H_2O}^{P,T}}{V_{H_2O}^{0,T}} \right)^{-2/3} \left[1 - \left(\frac{V_{H_2O}^{P,T}}{V_{H_2O}^{0,T}} \right)^{1/3} \right] \exp \left\{ \frac{3}{2} (K' - 1) \left[1 - \left(\frac{V_{H_2O}^{P,T}}{V_{H_2O}^{0,T}} \right)^{1/3} \right] \right\},
\]

and derive values for the isothermal bulk modulus \((K_T) \) of 0.6 GPa with pressure derivative \((K') \) of 4.5. Figure 2b shows that the Vinet fit is nearly identical to the hyperbolic decay curve up to 25 GPa, except that it is slightly steeper between 0 and 3 GPa. Extrapolation to much greater than 25 GPa reveals that the Vinet equation gives values for \(V_{H_2O} \) that are significantly smaller than the hyperbolic decay curve for lower mantle pressures. As I discuss in a later section, this could be incorrect, as it produces the unexpected outcome that hydrous melt becomes denser than anhydrous melts of the same composition at very high pressure. Figure 2b also shows earlier attempts at predicting \(\frac{\partial V_{H_2O}}{\partial P} \) from Burnham & Davis (1971) and Ochs & Lange (1999). Because there was an absence of high-pressure data at the time when these pioneering studies were done, they were unable to capture the very strong change in the slope of \(\frac{\partial V_{H_2O}}{\partial P} \).

3. Prediction of density crossovers in hydrous mantle differentiation

Our best-fit curve to the data in figure 2a allows estimation of \(V_{H_2O}^{P,T} \) and calculation of hydrous magma density at high pressures \((\rho_{\text{hyd}}^{P,T}) \) within the mantles of the terrestrial planets. This can be accomplished by assuming we have data on anhydrous magma with values for \(K_T \) and \(K' \) (e.g. Agee 1998) and a 1 bar reference density \((\rho_{\text{anhyd}}^{0,T}) \) (Lange & Carmichael 1987). To calculate the high-pressure density of the hydrous magma \((\rho_{\text{hyd}}^{P,T}) \), I first calculate the high-pressure density of anhydrous magma \((\rho_{\text{anhyd}}^{P,T}) \) using the third-order Birch–Murnaghan equation,

\[
P = \frac{3}{2} K_T \left[\left(\frac{\rho_{\text{anhyd}}^{P,T}}{\rho_{\text{anhyd}}^{0,T}} \right)^{7/3} - \left(\frac{\rho_{\text{anhyd}}^{P,T}}{\rho_{\text{anhyd}}^{0,T}} \right)^{5/3} \right] \left[1 - \frac{3}{4} (4 - K') \left(\frac{\rho_{\text{anhyd}}^{P,T}}{\rho_{\text{anhyd}}^{0,T}} \right)^{2/3} - 1 \right].
\]
Then I take

\[r^{P, T}_{\text{anhyd}} = \sum_i X_i M_i / X_i \bar{V}^{P, T}_i \quad \text{and} \quad r^{P, T}_{\text{H}_2\text{O}} = X_{\text{H}_2\text{O}} M_{\text{H}_2\text{O}} / X_{\text{H}_2\text{O}} \bar{V}^{P, T}_{\text{H}_2\text{O}}, \]

to calculate

\[r^{P, T}_{\text{hyd}} = \sum_i X_i M_i + X_{\text{H}_2\text{O}} M_{\text{H}_2\text{O}} / X_i \bar{V}^{P, T}_i + X_{\text{H}_2\text{O}} \bar{V}^{P, T}_{\text{H}_2\text{O}}, \]

where \(\sum_i X_i = 1 - X_{\text{H}_2\text{O}}. \)

Figure 3 shows compression curves for an FeO-rich komatiite that could represent a partial melt in the upper mantle. The density of the anhydrous version of this melt has been measured at high pressure (Agee 2008), and the compression curve is calculated from the Birch–Murnaghan equation with bulk modulus \(K_1 = 1800 \) GPa and \(K' = 4. \) I apply the method discussed above, using \(\bar{V}_{\text{H}_2\text{O}}^{1800, P} = 3.904 + (27.905 \times 1.764) / (1.764 + P(\text{GPa})), \) to construct a compression curve of the hydrous version of this komatiite with 5 wt% H\(_2\)O by calculating its density over a range of pressure from 0 to 18 GPa. At low pressures, the hydrous komatiite compression curve has a steeper slope than the anhydrous curve, but at \(p > 10 \) GPa the two curves have similar slopes, which is due to the effect of pressure on \(\partial \bar{V}_{\text{H}_2\text{O}} / \partial P \) as discussed above. Also shown in figure 3 is a calculated compression curve for olivine that is likely to be on the liquidus of the FeO-rich komatiite. The olivine compression curve intersects the anhydrous komatiite curve at approximately 8 GPa, resulting in a crystal–liquid density crossover. This anhydrous density crossover is consistent with the olivine flotation hypothesis confirmed in several earlier studies cited in §1. The olivine compression curve

Phil. Trans. R. Soc. A (2008)
intersects the hydrous komatiite curve at approximately 12 GPa or 360 km depth in the Earth, indicating that olivine will float in a melt with up to 5 wt% H₂O above the 410 km discontinuity in the Earth’s upper mantle. This predicted olivine–hydrous melt density crossover is in good agreement with the water filter hypothesis (Bercovici & Karato 2003), in which negatively buoyant hydrous melts are formed and trapped above the 410 km discontinuity from a dehydration reaction caused by the wadsleyite → olivine phase transformation. It appears from figure 3 that water contents above 5 wt%, at approximately 6–7 wt%, cause olivine to become negatively buoyant atop the transition zone. This is a relatively high water content that is unlikely to be required in the water filtration model or to explain seismic low-velocity regions, and the main point of figure 3 is that crystal–liquid density crossovers can exist at upper mantle pressures when significant amounts of water are dissolved in magma.

In figure 4, I apply these same data to the mantle of Mars and illustrate the density–pressure–depth relationships between anhydrous FeO-rich komatiite, FeO-rich komatiite with 5 wt% H₂O and possible liquidus crystalline phases olivine, majorite garnet and perovskite. A density crossover exists for hydrous silicate melt and olivine atop the mantle transition zone, which in Mars occurs at approximately 1200 km depth (approx. 14 GPa). This could mean that a region of low seismic velocity exists at 1200 km in Mars, analogous to the low S-wave velocities observed atop the 410 km discontinuity in the Earth (Revenaugh & Sipkin 1994), which may be associated with the presence of negatively/neutrally buoyant hydrous melts (Bercovici & Karato 2003). The depth of the CMB in Mars is not well known because we have no seismic velocity profiles for the Martian interior. However,
estimates based on moment of inertia (Yoder et al. 2003) and phase equilibria experiments (Bertka & Fei 1998) support the possibility that the top of a sulphur-rich Martian core would be at a pressure of approximately 24 GPa or a depth of approximately 2000 km. If so, then there will be a narrow ‘lower mantle’ layer that is rich in (Mg,Fe)SiO$_3$ perovskite, and perovskite will probably be the liquidus phase atop the Martian CMB. In this case, as shown in figure 4, both anhydrous and hydrous melts will be positively buoyant in the lower mantle layer. Thus, melts, if they are generated by CMB thermal boundary-layer anomalies, will tend not to be trapped or reside in this layer for a long time, but will instead rise upwards. This is in contrast to the possibility of dense trapped melts existing atop the Earth’s CMB, which I discuss below. It is worth noting that majorite garnet becomes the liquidus phase at approximately 22 GPa, approximately 200 km above the Martian CMB, and it would float in hydrous melt at this depth up to the level of approximately 16 GPa or 1300 km depth, in other words, a region approximately 500 km thick in the Martian transition zone. If there is appreciable water in the Martian interior, and if significant thermal anomalies can exceed the hydrous mantle solidus, and extend up into the transition zone, then hydrous melts there will be negatively buoyant relative to the coexisting crystalline majorite garnets, forming a ULVZ at 1300–1800 km depth in Mars.

4. Extrapolation of $\bar{V}_{\text{H}_2\text{O}}$ to lower mantle pressures

The data for $\bar{V}_{\text{H}_2\text{O}}$ in table 1 and figures 1 and 2 cover pressures up to approximately 20 GPa. This now allows reliable prediction of hydrous magma density in the Earth’s upper mantle and the transition zone, as discussed above. On the other hand, there is considerable interest in the possibility of melting at the base of the Earth’s lower mantle; thus, I consider the extrapolation of the current data to pressures of approximately 140 GPa, which is approximately the pressure at the CMB. Figure 5 shows that the three-parameter hyperbolic decay curve and the Vinet equation fits to the data give diverging extrapolation trajectories (figure 6). The three-parameter hyperbolic decay curve gives higher values for $\bar{V}_{\text{H}_2\text{O}}$ (approx. 4 cm3 mol$^{-1}$) at the pressure equivalent to the CMB, while the Vinet equation gives $\bar{V}_{\text{H}_2\text{O}} \approx 2$ cm3 mol$^{-1}$. We see some unexpected relationships at $p > 30$ GPa when we compare the anhydrous komatiite compression curve to the two hydrous compression curves derived from the two different $\partial \bar{V}_{\text{H}_2\text{O}}/\partial P$ extrapolations. The three-parameter hyperbolic decay curve hydrous $\partial \bar{V}_{\text{H}_2\text{O}}/\partial P$ extrapolation produces a compression curve that diverges from the anhydrous curve, showing increasing ‘$\Delta \rho$’ with pressure in the range 30–150 GPa (figure 7), whereas the data at less than 20 GPa indicate that $\Delta \rho$ decreases significantly with P at low pressure and is approximately constant above 10 GPa. The divergence of the three-parameter hyperbolic decay curve could possibly be an extrapolation artefact; however, data at pressures above 30 GPa are needed to test this. Diverging anhydrous and hydrous compression curves may not be impossible. It simply requires that $\bar{V}_{\text{H}_2\text{O}}$ decreases with pressure at a lesser rate than the sum of the partial molar volumes of the other oxide components in the melt. Why this should happen in the lower mantle and not in the upper mantle may not have a logical explanation and, I stress, may be an artefact of the three-parameter hyperbolic decay curve.
The Vinet equation extrapolation gives the opposite effect, in that it produces a hydrous compression curve that converges with the anhydrous curve. Convergence is consistent with the data-constrained part of the curve at less than 20 GPa, but the Vinet equation $V = 3.904 + \frac{49.219}{1.764 + P(GPa)}$ with $K = 0.6$ GPa and $K' = 4.5$.

Figure 5. Pressure versus V_{H_2O} diagram (normalized to 1800°C) showing the extrapolations of the best-fit equation-of-state curves to lower mantle pressures. The three-parameter hyperbolic decay curve is solid and the Vinet equation is dotted.

Figure 6. Pressure versus density diagram (normalized to 1800°C) comparing two compression curves for hydrous silicate melt (FeO-rich komatiite, 1800°C) and one for anhydrous silicate melt of the same composition. The hydrous compression curve (dashed) derived from $\partial V_{H_2O}/\partial P$ given by the best-fit three-parameter hyperbolic decay curve converges with the anhydrous curve (solid, $K = 30$ GPa, $K' = 4$) up to approximately 30 GPa and then diverges at higher pressures. The hydrous compression curve (dotted) derived from $\partial V_{H_2O}/\partial P$ given by the Vinet equation converges with the anhydrous curve (solid) and crosses over at approximately 90 GPa.

The Vinet equation extrapolation gives the opposite effect, in that it produces a hydrous compression curve that converges with the anhydrous curve. Convergence is consistent with the data-constrained part of the curve at less than 20 GPa, but the
Vinet-derived convergence results in a density crossover with anhydrous melt at 90 GPa, where $\Delta \rho$ is zero and at high pressures becomes negative (figure 7). This may seem at first glance to be a ‘forbidden’ outcome; however, it simply requires that V_{H_2O} decreases with pressure at a greater rate than the sum of the partial molar volumes of the other oxide components in the melt. This is indeed observed at $p < 20$ GPa; however, the question remains open if this is an extrapolation artefact or if hydrous melts can become denser than anhydrous melts. Clearly, these questions cannot be adequately addressed until new experimental data on V_{H_2O} at lower mantle pressures are available. Perhaps a more likely outcome is that the hydrous and anhydrous curves continue to converge at pressures above 30 GPa; however, the convergence becomes very small and the curves would be indistinguishable from parallel. Even though these examples demonstrate some of the uncertainties in extrapolating upper mantle data to pressures of the deep lower mantle, and the need for new data at higher pressures, I now apply the current extrapolations and explore the possibility of density crossovers in the lower mantle.

Figure 8 shows the density–pressure relationships for anhydrous FeO-rich komatiite melt, hydrous FeO-rich komatiite melt with 5 wt% H$_2$O and crystalline (Mg,Fe)SiO$_3$ perovskite in the Earth’s lower mantle. I show two versions of the hydrous compression curve as follows. The first one is a compression curve that diverges from the anhydrous curve at $p > 30$ GPa, and is derived from the best-fit three-parameter hyperbolic decay for V_{H_2O}. The other is a compression curve that converges with and crosses over the anhydrous curve at 90 GPa, and is derived from the best-fit Vinet equation for V_{H_2O}. The anhydrous melt compression curve has a density crossover with perovskite at 95 GPa, which is consistent with earlier results.

Phil. Trans. R. Soc. A (2008)
For the divergent hydrous compression curve, the density crossover with perovskite occurs at \(p = 140 \) GPa. In this case, silicate melt with 5 wt% water would be less dense than perovskite atop the CMB; however, melts with lower water contents (<5 wt%) could be neutrally buoyant or denser than coexisting perovskite at the CMB. For the convergent hydrous curve, the crossover with perovskite is slightly lower than 95 GPa and, of course, at a lower pressure than the anhydrous curve. As a result, the density crossover for both anhydrous and hydrous melts and equilibrium perovskite occurs at similar pressures at the base of the lower mantle or in the D'' layer. This is consistent with the observed seismic ULVZ (Williams & Garnero 1996), thought to be associated with partial melts trapped by negative buoyancy at these depths, although these melts are not required to be hydrous.

This work is supported by grants from NSF EAR and NASA. Comments and suggestions by Jed Mosenfelder improved the manuscript.

References

