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Digital information flow within the intensive care unit (ICU) continues to grow, with
advances in technology and computational biology. Recent developments in the
integration and archiving of these data have resulted in new opportunities for data
analysis and clinical feedback. New problems associated with ICU databases have also
arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly
sampled, as well as being non-stationary, noisy and subject to frequent exogenous
perturbations by clinical staff. Relationships between different physiological parameters
are usually nonlinear (except within restricted ranges), and the equipment used to
measure the observables is often inherently error-prone and biased. The prior probabilities
associated with an individual’s genetics, pre-existing conditions, lifestyle and ongoing
medical treatment all affect prediction and classification accuracy. In this paper, we
describe some of the key problems and associated methods that hold promise for robust
parameter extraction and data fusion for use in clinical decision support in the ICU.
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*A
1. Introduction

Intensive care provides one of the most challenging locales for both clinicians and
engineers who try to support clinical activities. Intensive care unit (ICU)
patients are often the sickest, frequently having several pathophysiological
problems that must be managed simultaneously to avoid death or severe
morbidity. Both physiological state and external interventions change
frequently, demanding rapid analysis and quick, high-stakes decisions.

Advances in the development of technology, computational signal processing
and biological modelling have led to a growing interest in the archiving and use
of extensive hospital–medical databases. Although current clinical practice is
centred on human expert assessment of the correlations between parameter
values and symptoms, there is a growing awareness within medical communities
that the enormous quantity and variety of data available cannot be effectively
assimilated and processed without automated or semi-automated assistance.
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Automated systems have been in place in the ICU and the operating theatre
(OR) for several decades, including automated arrhythmia analysis of the
bedside electrocardiogram (ECG) and low (or high) oxygen saturation warnings
from the photoplethysmograph (PPG). However, each device acts in an isolated
fashion with no reference to related signals or an individual’s prior medical
information, such as genetics or medical history. Some patient-specific data are
used in an ad hoc manner, such as body weight (for the adjustment of drug
rates), allergies (to restrict medications) and age (for arrhythmia alarm
thresholds). However, automated use of such information is rare.

In this paper, we outline a long-term approach to develop systematic bases for
extracting information in order to provide assistance to clinicians faced with the
enormous challenges of providing high-quality ICU care. We are currently
collecting large datasets of actual patient experiences in the ICU, developing
methods to analyse and abstract those data, retrieval systems to allow selection
of events of interest, creating models that relate such data to patients’ clinical
conditions and pathophysiological status, and building both physiological and
statistical models to enable sophisticated decision support systems that base
alarms on an integrated view of the patient and that can assess or even suggest
alternative courses of action. Although we frame these ideas within a wider
context, here, we focus principally on the problems we have encountered and the
solutions we have developed for collecting ICU patient data and extracting
information that is useful for decision support.

We have instituted a large-scale systematic collection of data about ICU
patients (Saeed et al. 2002) to provide a baseline understanding of what currently
happens in the ICU and to allow us to learn to model patients’ conditions and
their responses to various interventions. These data derive from a heterogeneous
set of sources, including bedside monitoring equipment; clinical observations by
doctors and nurses; laboratory measurements; records of both continuous and
discrete drug administration; reports from physical examinations, referring
physicians, radiologists, pathologists and other specialists; and records of past
conditions, treatments and outcomes, as normally recorded in discharge
summaries. Each of these sources of data carries its own set of technical
problems, ranging from mundane issues of data standardization to difficulties in
assessing the quality of recorded data and dealing with missing data. To date, we
have collected data on approximately 30 000 patients from four different ICUs at
a large tertiary-care teaching hospital. Approximately 10 per cent of those
records include high-frequency physiological signals recorded from the bedside
monitors, including multichannel ECG, invasive arterial blood pressure (ABP)
and PPG. Associated derived parameters, such as heart rate, systolic/diastolic
blood pressure and oxygen saturation, are also available.

In the following sections, we describe issues we have encountered in

(i) the collection, measurement, transmission, transcription and storage of
these data,

(ii) abstraction and robust parameter extraction from often noisy and
incomplete data, and

(iii) extraction of clinically relevant concepts from unstructured text, which is
the form in which many notes and reports are stored.
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2. Errors in collection, measurement, transmission, transcription
and storage of data

The first problem faced in gathering ICU data is the necessity of collecting the
data from a variety of sources: instruments that acquire and digitize continuous
signals; devices such as respirators and intravenous drug delivery systems that
must be interrogated to record their settings; laboratory results that may have
been automatically or manually transcribed into clinical information systems;
and medical histories, admitting notes, progress notes, problem lists and
discharge summaries that must be obtained from online or paper medical
records. These diverse data streams must be synchronized in order to make
sense of their inter-relationships. Even establishing basic causal relationships
among data elements (did the patient’s symptoms prompt a change in
medication, or did the medication change cause the symptoms?) can be
problematic when time is recorded by independent and unsynchronized clocks.
At an even more basic level, it is necessary to match each recorded data stream
with the correct patient among all those currently in the hospital, a problem
that should be trivially easy to solve but is often complicated by instruments
with poorly designed set-up procedures that are not always completed in the
context of urgent care, human transcription errors (Hug & Clifford 2007;
Vawdrey et al. 2007) and policies intended to protect patient privacy. The use of
proprietary formats and protocols for medical data storage and communications
is slowly giving way to open formats (e.g. EDF, WFDB, XML; Clifford et al.
2008) and protocols (such as HL7 and the IEEE medical information bus
standard P1073; Alsafadi et al. 1994), which will reduce transcription errors.
However, the processes of capturing and digesting these data into a consistent
format remain complex.

Having solved all of these problems by whatever means necessary, it may be
possible to assemble an electronic medical record containing most of the
information upon which medical decisions are founded. Just as traditional
medical records may contain errors from a variety of sources, so may their
electronic equivalents. Measurement errors may stem from incorrect calibration,
improperly located or malfunctioning transducers, artefact, environmental noise,
or from errors in transmission, transcription, storage or retrieval (Clifford &
Oefinger 2006). Some of these errors can be minimized by use of good bio-
medical, computer and human engineering practices, for example by stabilizing
sensors to limit motion-related artefact; minimizing the area of low-voltage
sensing circuits and using shielded cables to avoid signal contamination by
induced currents; using error detecting and correcting codes when transmitting
and storing packets of digital data; employing data communication protocols
that incorporate handshaking, retransmission and redundancy to avoid data
loss; redesigning workflow to capture data automatically, to avoid manual
transcription of data where possible, and to verify data that must be transcribed
at the time of transcription; and regular reviews of data collection practices to
identify and address deficiencies.

Conscientious use of best practices can reduce but not eliminate measurement
errors. The effects of those errors that remain upon subsequent analysis of the
record can be minimized by searching for logical inconsistencies (such as when the
systolic blood pressure is lower than the mean or diastolic blood pressure), or by
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comparing multiple redundant measures of the same physiological parameters.
For example, heart rate may be derived from the ECG, an invasive ABP line and
the PPG. These issues are explored further in §3d, after discussing problems and
solutions related to noise reduction, signal quality, artefacts and missing data.
3. Abstraction and robust parameter extraction

In order to provide information for medical experts (or automated decision
support systems) to make choices concerning patient care, the wealth of available
data must be reduced to a set of distinct concepts and features. Although many
parameters are derived from patient data ‘on the fly’ and recorded for later
review, trust metrics or signal quality measures associated with these parameters
are rarely stored. Therefore, it is difficult to ascertain the credibility of a given
parameter unless the original data from which the parameter was derived are
available, either to visually verify the data or in order to derive independent
quality metrics.

Noise reduction algorithms often introduce misleading distortions in
medical time-series data and, therefore, they should be applied only when
the data are determined to be too noisy for a feature extraction algorithm to
be applied accurately. However, it is often necessary to extract features and
compare them with a population norm, or a patient’s history, in order to
determine whether significant amounts of noise are present. A method for
simultaneously (or recursively) extracting features and estimating noise levels
is, therefore, appropriate.

In this section, we describe a generic approach to noise reduction and signal
quality analysis, together with a data fusion framework that provides for a robust
estimate of extracted physiological parameters that evolve over time.

(a ) Noise reduction

After appropriate formatting, storage and initial coding of data, perhaps the
most important stage in data processing is the application of signal processing
algorithms to deal with the noisy and transient nature of physiological signals.
Even when the data are continuously available and the sampling rate is high
enough, data can still be masked by periods of intense noise due to movement
artefact. Strategies for detecting and (where possible) removing noise in
physiological data depend on the nature of both the noise and the data source
and typically include infinite impulse response filters, finite impulse response
filters, principal component analysis (PCA; Moody & Mark 1989), independent
component analysis (ICA; McSharry & Clifford 2004; He et al. 2006) and
wavelets (Addison 2005). Much of the data recorded in the ICU are nonlinear or
non-stationary, however, and the mixing between the noise and the signal is also
non-stationary. Therefore, techniques such as ICA cannot work reliably unless
calculated over small, quasi-stationary segments of data and frequently updated.
Furthermore, the noise and the signal are not independent, such as when heart
rate increases due to activity are associated with increasing frequency of artefact
(Clifford et al. 2002) and methods to separate them, which assume independence
(such as PCA and ICA), only work when the coupling between the signal and
the noise is weak. It should be noted that PCA-based techniques have proved
Phil. Trans. R. Soc. A (2009)
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extremely effective for filtering on a beat-by-beat basis, particularly in appli-
cations such as QT analysis (Okin et al. 2002), ST analysis (Moody & Jager
2003; Jager et al. 2004), QRS subtraction and QRS classification (Moody &
Mark 1989).

Takla et al. (2006) provided a thorough review of the types of contamination of
signals in the OR and methods that have been proposed to deal with the noise.
Although much of this information is pertinent to monitoring in general, the ICU
is more problematic than the OR, since the latter is more highly controlled, with
a higher staff-to-patient ratio. ICU data are often only available on an infrequent
basis (relative to the underlying dynamics), and removal of noise becomes
problematic. The best method to deal with noise is often simply the use of a
median filter to reject outliers (Mäkivirta et al. 1991). For example, heart rate
and blood pressure averages recorded by nursing staff every hour sometimes
exhibit artefacts that are significantly different from the underlying waveform
data (Hug & Clifford 2007). Although a median filter is able to reduce the
average magnitude of the error in this scenario, this is only because patients tend
to be stable and exhibit the same physiological parameter values from hour to
hour. However, there is no guarantee that the outlier is not a real event. In fact,
it is the rare outliers that are often of interest in biomedical time-series data,
since they indicate that the aim of managed stability for a patient may be
unsuccessful and that changes in treatment are required.

To allow for the non-stationary nature of ICU data, an adaptive filter is
often more appropriate, where the transfer function changes in response to
each new data sample or feature (Takla et al. 2006). Adaptive filters are
generally either ad hoc (Martinez et al. 1997; Husoy et al. 2002) or model-
based (Clifford et al. 2005; Clifford 2006; Sameni et al. 2007). Although model-
based filters provide a much more effective suppression of noise, they tend to
be more computationally intensive, and their effectiveness is dependent on the
accuracy and applicability of the model employed. In Sameni et al. (2007), the
authors recently proposed an adaptation of a model-based filtering approach to
the ECG, which is particularly suitable to a real-time implementation. By
using an unscented Kalman filter, a nonlinear version of the Kalman filter
(KF), they leveraged the beat-to-beat dynamics (and similarities) to allow a
computationally efficient Bayesian approach to ECG model parameter
estimation. Although Sameni et al. demonstrated that the technique outper-
forms the best of previously described ECG filters on normal sinus rhythm
ECGs, performance on arrhythmic data is unclear. In all likelihood, unless a
pre-classification algorithm is employed, the model will have to be refitted to
the data for moderate changes in morphology, and classified as abnormal or
artefactual. It is also worth noting that, since the model is based upon a
superposition of Gaussians, it is easily adapted to filtering and classification of
other cardiovascular signals such as the blood pressure (Clifford & McSharry
2004; Clifford et al. 2005).
(b ) Artefacts and missing data

Most filtering techniques are also sensitive to artefacts and missing data. In
particular, even when signals have been sampled above the Nyquist limit, intervals
of missing data may be frequent, due to disconnections, sensor errors, equipment
Phil. Trans. R. Soc. A (2009)
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changes, intrusive diagnostics and request-based data (such as blood tests).
Sometimes noise and artefact can be so high that it is best just to discard the section
of data, effectively making an evenly sampled signal irregularly sampled.

Often the sampling frequency is inherently uneven, particularly in the case of
diagnostic data, which are ordered when an event or combination of observations
indicate that a particular test is required. Missing data and irregular sampling
are highly related concepts, although the former implies that useful data may
exist between each sample point and may carry further information about the
state of the patient (such as a significant change in a given variable). Some form
of interpolation may, therefore, be useful in estimating the unobserved
information. However, it may not be appropriate to guess the values of missing
or hidden data, since any slight error might lead to an erroneous decision; there
are cases when an estimate is useful. Furthermore, reporting the bounds of error
in an estimate allows a clinician to make safe harbour decisions.

For single-parameter time series, little more than a sample-and-hold approach
(with a time-out) is generally used to fill in the missing data. This is generally a
good approach for frequently sampled data from ICU patients who are usually
managed for stability, and thus exhibit infrequent large changes in the value of a
physiological parameter. However, the situations that are often more interesting
and informative are the infrequent changes and resampling schemes are often
used (such as sample-and-hold, linear or cubic spline interpolation). However,
these approaches introduce spurious low- and high-frequency noise and can be
extremely sensitive to the number of missing data points or to the irregularity of
the missing data (Clifford et al. 2005).

Other more complex methods for filling in missing data involve using the
statistical and/or dynamic nature of the data (rather than just neighbouring
gradients) to form estimates of the intervening sample values such as min–max
interpolation (Fessler & Sutton 2003), autoregressive modelling (Rajan et al.
1997; Cassidy & Penny 2002) and KF methods (Chin 2001; Yarita et al. 2007).
Sometimes, however, it is more appropriate to use methods specifically designed
to be used with missing data (or irregularly sampled signals). For spectral
estimation, the Lomb–Scargle periodogram (LSP; Lomb 1976; Scargle 1982) is a
particularly robust method for extracting frequency estimates of unevenly
sampled data, and has been shown to be particularly suited to spectral
quantification of heart rate variability (Moody 1993; Laguna et al. 1998). The
LSP does not require the interpolation of any data, as it performs a least-squares
fit of sinusoids at each frequency to form an estimate of the power spectral
density. The LSP has been shown to be relatively insensitive to the density of
missing data and removed artefact with relatively insignificant changes for up to
20 per cent missing data (Clifford et al. 2005).

When multiple sources of related information are available, it is possible to
exploit the covariance of the data, such as when using PCA or imputation.
However, such techniques again assume stationarity of the dynamics of the data
(unless incremental updates are calculated on a frequent basis), and they require
that the missing data be missing at random or that an accurate model of how the
missing data are distributed be known. Furthermore, these techniques are
sensitive to outliers and non-removed errors. Since no accurate model exists of how
missing or noisy data are distributed, the interpolation of missing ICU data is
extremely difficult (Abdala & Saeed 2004). (In general, data are missing because
Phil. Trans. R. Soc. A (2009)
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they are perceived to be irrelevant for the current clinical problems, or because
exogenous interventions or endogenous activity has rendered the data useless.
Neither of these circumstances is random, or amenable to simple models.)

It should be noted that the frequency at which a parameter needs to be sampled
depends on both the parameter type and the question we are asking about the
patient. For example, although blood pressure can exhibit large changes over a
period of a few seconds (e.g. during a head-up tilt), if we are looking for evidence
of haemorrhage, we may not need to sample more frequently than once every 5 or
10 min to capture the dynamics of the situation. The required sampling frequency
is also related to the intrinsic dynamics of the parameter, so that heart rhythm,
which can change over a few beats, is sampled rapidly (at 100 Hz or more),
whereas blood creatinine (abnormal levels of which indicate renal insufficiency)
may change only over hours. Consequently, creatinine values are sampled much
less frequently and can be reliably interpolated over several minutes, whereas
heart rate estimates cannot. The effective Nyquist frequency for a particular
parameter also depends on an individual’s physiology and medical condition, and
so it is difficult to be sure whether parameters are being undersampled. However,
clinical teams tend to sample parameters more frequently when they believe a
patient may be unstable with a rapidly changing (usually degenerating)
physiological condition. Therefore, the clinical team often notices signs or
symptoms indicative of rapid changes and adjusts the sampling rate so that loss
of important information does not occur.
(c ) Signal quality analysis

Since robust methods for dealing with missing data are not always available, it
is sometimes more appropriate to define a signal quality measure for a given data
stream, and simply ignore the segments of data that have a signal quality below a
given value. However, metrics for signal quality are both signal and application
specific. For example, noise above 20 Hz, which does not distort ABP estimates,
can disturb ECG peak detection algorithms and cause heart rate variability
algorithms to report incorrect values, while leaving heart rate estimation
algorithms unaffected. Low-frequency noise (below 1 Hz), which only disturbs
subtle features in the ECG such as the QT interval or ST segment, can cause
significant errors in the estimate of the blood pressure. A general treatment of
signal quality measures is therefore not possible. However, signal quality indices
(SQIs) can generally be constructed by thresholding on known physiological
limits such as the maximum field strength for the ECG, the maximum rate of
change of the blood pressure or the distribution of energy in the frequency
domain. However, it is the relationship between physiological parameters that
provides the greatest opportunity to construct SQIs. For example, if heart beats
are detected in several ECG and/or pulsatile waveforms within an expected
period of time, all signals can be considered to be of reasonable quality.

SQIs are generally calculated by bedside monitoring equipment but are
rarely used by clinical teams or automated alert systems, since there is often
an assumption that the monitor will provide either no information or a best
guess of a parameter in the absence of good quality data. However, as we have
already discussed, it is very difficult to make an accurate or useful guess of
a missing parameter in non-stationary data, such as that found in the ICU, and
Phil. Trans. R. Soc. A (2009)
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a sample-and-hold approach is often used. Although this can be useful to a human
attempting to observe the current state of the patient, this is an inappropriate
solution for passing data to an automated or semi-automated algorithm.

With current trends towards semi-automated analysis, it is important that
SQIs are available for each datum and, if possible, be calibrated to provide a
known error for a given value of the SQI. In this way, another algorithm can make
informed choices concerning the validity of the datum for a given application, and
derived estimates can be provided with accurate error bounds. In Li et al. (2008),
we calibrated a set of ECG signal quality metrics (based upon statistical,
temporal, spectral and cross-spectral features of the ECG), so that a given value of
an SQI metric was equated to known error in heart rate. A similar approach was
also taken to ABP, and hence error bounds in derived estimates that rely on heart
rate and blood pressure (such as the cardiac output) can easily be estimated from
the standard compound error formula. Generally, data in the ICU are processed in
isolation from other parameters and signal quality labels are therefore rarely
constructed with reference to other signals. In our approach to SQI derivation, we
have concentrated on the relationships between signals, such as the transit time
between the ECG and the ABP (Zong et al. 2004) and the inter-ECG lead
relationships (Li et al. 2008). By comparing related signals and thresholding these
relationships on known physiological limits, it is possible to determine whether the
data are logically consistent. Since it is rare that a sequence of extracted features
will randomly manifest in a physiologically plausible manner, internal consistency
between signals can indicate high signal quality on the contributing leads.

Frequently measured parameters (such as heart rate and blood pressure) are
amenable to SQI analysis because there is usually an underlying rapidly sampled
waveform from which the metrics can be derived. When the sampling rate of the
data available drops to around 1 Hz or below, signal quality measures become
problematic, since it is almost impossible to differentiate between a real
physiological change and an artefact.

Errors in less frequently sampled clinical data (such as blood tests) are more
difficult to determine for two reasons. First, the sampling rate is low compared
with how rapidly a variable can change. (It should also be noted that there is
often a considerable delay between the biological samples being sent for testing
and the received results, and so an accurate knowledge of the time of the original
sampling must be known.) Second, the relationship of a blood test to other
signals is extremely complex, and testing the ‘truth’ of a measurement would
require an extremely complex and accurate model of an individual’s physiology.
The general approach is that a clinician makes a hypothesis concerning the
outcome of the test, based upon current monitored data and a medical history. If
the prediction turns out to be accurate, then the belief in the result is high.
Otherwise, a test may be reordered, particularly if subsequent data indicate that
the test results are contradictory. This type of modelling is extremely complex
and the reader is referred to Long (2001) for more details.
(d ) Robust data fusion

Exploitation of the covariance structure of the data is one method of data
fusion, since a non-diagonal covariance matrix implies redundancy in the
individual data streams. However, weighting different data streams can be
Phil. Trans. R. Soc. A (2009)
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difficult when the measurement units are different and the distributions of the
data are different (and non-Gaussian). For instance, what blood pressure change
(measured in mm Hg) is equivalent to a 5 per cent drop in oxygen saturation?
Townsend and Tarassenko (Nairac et al. 1997; Tarassenko et al. 2001, 2002b)
approached this problem by using a large ICU database to renormalize five
clinical parameters (heart rate, blood pressure, respiration rate, oxygen
saturation and temperature) to zero-mean unit variance. Large statistical
deviations in this five-dimensional space equate to abnormality that has been
shown to be predictive of future interventions (Tarassenko et al. 2006).

When the data to be fused pertain to the same parameter, the data fusion is
technically more straightforward, although it requires a method for arbitrating
between conflicting estimates. In a recent work, we have extended the work of
Tarassenko and Townsend (Tarassenko et al. 2002a, 2003) to fuse multiple
observations of different physiological signals (such as heart rate and blood
pressure) from multiple sources, recorded at arbitrary times, within a KF
framework (Li et al. 2008).

The KF is an optimal state estimation method for a stochastic signal that
estimates the state of a discrete-time controlled process, x, with observable
measurement data z. The KF uses the a posteriori state estimate x̂Kk , a state
transition matrix H and the Kalman gain Kk to recursively predict the a priori
kth state estimate, such that

x̂k Z x̂Kk CKk zkKH x̂Kkð Þ: ð3:1Þ

The Kalman gain is given by KkZPK
k H

TðHPK
k H

TCRÞK1, where PK
k is

the error covariance of the a priori estimate and R is the state noise covariance.
The above estimate minimizes the measurement innovation h (or residual,
sometimes denoted r) given by hkZzkKH x̂Kk (the error between the prediction
and the observation).

Note that K is inversely proportional to R, the measurement noise covariance,
and represents how rapidly the KF will adapt to new observations. In a recent
paper (Li et al. 2008), we have proposed a modification to R by a multiplicative
factor, such that R/gR, where

gZ eðs
K1K1Þ; ð3:2Þ

and s is a signal quality threshold raging between 0 (poor signal) and 1 (excellent
signal quality) inclusively. This modification has the effect of forcing a KF tracking
algorithm to trust any given observation when the SQI, s, is high (since as s/1,
g/1). When the SQI, s, is low, g tends to infinity and the resultant large increase
in R results in a low Kalman gain. Therefore, the KF no longer trusts the current
observation to make a prediction, and relies on previous observations instead.
This approach turns out to provide a low error, unbiased estimator for
cardiovascular time series of heart rate and blood pressure, even in extremely
high noise scenarios since noisy segments of data are automatically rejected.

This KF approach also provides a robust framework for fusing multiple
observations of the same parameter from different sensors. Tarassenko and
Townsend (Tarassenko et al. 2002a, 2003) proposed weighting each observation,
xk, of a physiological parameter by the inverse of the normalized innovation, h,
for each channel. In the two-channel scenario (kZ1, 2), the weighted estimate of
Phil. Trans. R. Soc. A (2009)
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a parameter becomes

x Z
h22

h21 Ch22

� �
x1 C

h21

h21 Ch22

� �
x 2: ð3:3Þ

In their application, x was separately given as a scalar heart rate or respiration
rate. Furthermore, H was assumed to be unity and so the current state is
approximately the same as the last state ðxkzxkK1Þ. For beat-to-beat or breath-
to-breath updates, this can be considered approximately true.

Although equation (3.3) weights observations with low innovations more
heavily, the higher innovation can sometimes be associated with the more
accurate estimate. Therefore, we added a scaling function to the innovation, such
that h2/h2sK2, for each channel and low-quality estimates are ‘unweighted’. For
N-channels, this becomes

x Z
XN
kZ1

QN
iZ1;isk

hi
lisi

� �2
PN
iZ1

QN
jZ1; jsi

hj
lisj

� �2 !
xk

0
BBBB@

1
CCCCA ðk Z 1; 2;.;NÞ; ð3:4Þ

where the 0%l%1 are trust factors for each of the channels of data. This
formulation is particularly useful for the ICU data where multiple estimates of
the same physiological parameter can be derived. For example, one might use the
PPG, or pulmonary arterial pressure, as well as the ABP and ECG to determine
physiological parameters such as HR, ABP or cardiac output.

The trust factor l can be useful when two measurements of the same variable
come from devices that are known to have independent and different error
profiles, such as the invasive and non-invasive cuff measurement of blood
pressure. In this case, the l for the invasive arterial line could be set to 0.9 (to
reflect a 10% error) and the l for the sphygmomanometer cuff measurement
could be set to 0.8 (to reflect an inherent 20% error in the reading).

This approach can also be thought of as a robust weighted interpolation
scheme, with a sampling frequency of the combined set of observations. That is,
the KF is updated at every observation, and every channel of data provides an
estimate of the physiological parameter at a different time point. Therefore, the
resultant time series has a sample point at each observation that is fit to a
weighted sum of previous and current measurements.

The signal quality-modified KF approach described above involves a scalar
observation model with the simplest dynamical approach (assuming that the
next observation will be approx. equal to the last observation). Extensions that
employ models of the dynamic evolution of the cardiovascular system, or vector
KF formulations that employ models of how each signal is related to each of the
other recorded signals, are likely to improve this method of tracking and noise
rejection approach.

For example, Pueyo et al. (2008) used a KF to fuse information from the QT
and RR intervals to dynamically characterize beat-to-beat adaptation of the
repolarization period to changes in heart rate. Our group has also made
significant progress in building both statistical (Roberts et al. 2006) and explicit
cardiovascular models (Parlikar et al. 2006, 2007) for the ICU data. In particular,
Phil. Trans. R. Soc. A (2009)
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cycle-averaged models of blood pressure changes have proved accurate for
modelling changes in the blood pressure and estimating cardiac output (Parlikar
et al. 2007).

However, considerable barriers remain, including modelling non-stationarities
in the parameters and dealing with the underlying noise. Without good methods
for rejecting (or unweighting) noise, no system of modelling, data fusion or
missing information estimation is likely to work reliably. Signal quality measures
should therefore be evaluated on large databases, and then calculated and stored
for all possible signals in the ICU.
(e ) False alarms in the ICU

One example of where we have applied the concepts of signal quality and data
fusion is in the arena of false alarm (FA) suppression in the ICU. FAs in the ICU
can lead to a disruption of care, impacting both the patient and the clinical staff.
The resultant excessive noise pollution, desensitization to warnings and slowing
of response times (Chambrin 2001) can lead to missed alarms, decreased quality
of care (Donchin & Jacob 2002; Imhoff & Kuhls 2006), sleep problems (Meyer
et al. 1994; Parthasarathy & Tobin 2004), stress for both patients and staff
(Baker 1992; Novaes et al. 1997), depressed immune systems and longer patient
stays (Hagerman et al. 2005).

Tsien & Fackler (1997) conducted a prospective, observational study in a
multidisciplinary ICU to record the occurrence rate, cause and appropriateness
of all alarms from tracked monitors. After 298 monitored hours, 86 per cent of a
total of 2942 alarms were found to be false-positive alarms, while an additional 6
per cent were classified as clinically irrelevant true alarms (TAs). Only 8 per cent
of all alarms tracked during the study period were determined to be TAs with a
clinical significance associated with them.

Recently, Zhang et al. (2007) designed a system to simultaneously collect
physiological data and clinical annotations at the ICU bedside, and to develop
alarm algorithms in real time based on patient-specific data collected while using
the system. After deployment of a prototype in a paediatric ICU equipped with a
newer generation bedside monitoring system, a dataset of 196 hours of vital sign
measurements at 1 Hz together with associated alarms was collected.
Approximately 89 per cent of the recorded alarms were found to be clinically
relevant true positives, 6 per cent were true positives without clinical relevance
and 5 per cent were false positives (Zhang et al. 2007). Real-time machine
learning showed improved performance over time and generated alarm
algorithms that outperformed the previous generation of bedside monitors and
came close in performance to the latest generation of bedside monitor alarm
algorithms (Zhang 2007). Interestingly, this work shows that an algorithm
trained only on data from a specific patient can approach the level of
performance of commercial algorithms that are trained on much larger datasets
(Zhang & Szolovits 2008).

Our recent analysis concerned the suppression of false life-threatening
arrhythmia alarms issued by the bedside ECG monitor. Using two independent
reviewers, we annotated 5386 alarms from a total of 447 adult patient records
spanning 41 301 hours of simultaneously acquired ECG and ABP. A third
reviewer then checked each alarm to adjudicate discrepancies and check the
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overall quality of the alarms. The critical arrhythmia alarm types were
selected to be (i) asystole, (ii) extreme bradycardia, (iii) extreme tachycardia,
(iv) ventricular tachycardia (VTach), and (v) ventricular fibrillation. Annotation
revealed the FA rates of these five alarm types to be 90.7, 29.3, 23.1, 46.6 and
79.6 per cent, respectively, with an average FA rate of 42.7 per cent. An
algorithm to suppress these FAs was then developed, which used a signal quality
measure, sN, derived from the ABP waveform to decide on the truth of the ECG
arrhythmia alarm. (In this application, sN was actually a signal ‘normality’ index
(Sun et al. 2006). Signal normality equates to a high signal quality and no
features indicative of a non-sinus rhythm.) At each ECG alarm point, a reference
was made back to a 20 s synchronous segment of the ABP waveform, and if sN
was higher than a given threshold, the blood pressure was considered to be
commensurate with a sinus rhythm, and the ECG alarm was suppressed if the
ABP-derived heart rate was too slow (or fast). The threshold, sN, was expected
to differ for each alarm type since abnormalities in the ECG will differ depending
on rhythm and heart rate. Therefore, the annotated alarms were divided into two
sets: a training set and a testing set. Each sN was then optimized (together with
other alarm-specific thresholds, such as the number of beats from which to
calculate the heart rate), to determine the highest FA reduction rate, with the
lowest TA suppression rate.

This approach provided an overall FA reduction rate for the five alarm
categories above of (i) 93.5 per cent, (ii) 81.0 per cent, (iii) 63.7 per cent, (iv) 33.0
per cent, and (v) 58.2 per cent, with an overall suppression rate of 59.7 per cent.
This equates to an equivalent FA rate of (i) 5.5 per cent, (ii) 5.5 per cent, (iii) 8.4
per cent, (iv) 30.8 per cent, and (v) 33.1 per cent, with an overall FA rate of 17.2
per cent. However, it should be noted that invasive arterial lines are not available
for all patients in the ICU (only approx. two-thirds of the population), and so to
provide this level of FA suppression for all life-threatening alarms would require
an extension of the algorithm to use the oxygen saturation waveform. TA
suppression rates were all zero except for VTach, indicating that VTach does not
always manifest as an abnormal ABP waveform, and referencing back to the
ECG is required. A full description of the method and results can be found in
Clifford et al. (2006) and Aboukhalil et al. (2008).

Significant work still remains in the arena of FA reduction, particularly with
respect to lower priority alarms, which, although less important, still add
significantly to the problem of FA pollution in the ICU. In fact, non-critical
alarms constitute over 90 per cent of the alarms in the ICU. Furthermore, these
alarms are not split into groups relating to clinically insignificant, clinically
relevant and immediately actionable. The data and annotated alarms, a subset of
the MIMIC II database, have therefore been made publicly available via
PHYSIONET (Goldberger et al. 2000; LCP 2008) in the hope that public
collaboration will rapidly improve this situation.
4. Coding of clinically relevant events and concepts

Once parameters have been robustly extracted, they must be provided with a
useful label. In the case of standard cardiovascular parameters, the label is self-
evident (heart rate, blood pressure, cardiac output, etc.). However, combinations
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of parameters can provide a richer picture of the state or class of a patient. For
example, a series of desaturations during the night followed by cessations in
breathing are indicative of apnoea. The prior probability of placing the patient
into a given class can be extremely important and a rich database of ICU data
also provides the opportunity to extract information for such prior probabilities
from alternative sources.
(a ) Medical lexicons for annotating ICU data

The objective (or semi-objective) classification of ICU data requires a
standardized lexicon or system of labelling. Although such systems exist for
some signals (such as the ECG), many labels rely on subjective observations with
high interobserver variability. Furthermore, for many medical diagnoses, there
are no agreed definitions, and the divisions between categories are fuzzy. For
example, more than 30 different definitions of acute renal failure have been used
in the literature (Bellomo et al. 2004). However, with multiple experts and a well-
defined set of criteria, the labelling of a given event or condition reaches
agreement levels of 95 per cent (Douglass et al. 2004; Neamatullah et al. 2008).
Labelling of ICU data can occur manually, automatically or in a semi-automated
fashion, but in each case, a standard lexicon is required. There are several
standard lexicons for labelling ICU data, depending on the category of data.
These include Logical Observation Identifiers, Names and Codes (LOINC; for
laboratory and other diagnostic results), the Systematized Nomenclature of
Medicine–Clinical Terms (SNOMED-CT; for diseases, findings, procedures,
micro-organisms, pharmaceuticals, etc.), Medical Subject Headings (the National
Library of Medicine’s controlled vocabulary thesaurus of naming descriptors
organized in a hierarchical structure) and the International Classification of
Diseases (Chen et al. 2007).

The Unified Medical Language System (UMLS) acts as an umbrella lexicon for
many of these subsystems (although with some enhanced features; Zhang et al.
2005). The UMLS is very large and complex, however; it poses significant
comprehension problems for users and database maintenance personnel (Gu et al.
2000). Furthermore, the UMLS contains omissions of concepts, errors of
semantic type classification and concept ambiguities. In particular, there is no
one-to-one mapping between sub-lexicons and often multiple UMLS terms are
required to describe a particular event or procedure.

We have therefore developed open-source JAVA software for using a subset of
the UMLS to construct descriptors of events in the ICU data (Shu et al. 2004).
The UMLS descriptors associated with a given event generally consist of an event
code (such as ‘C0340535, acute massive pulmonary embolism’) or a state code
(such as ‘C0018802, congestive heart failure’). The codes are often associated
with a qualifier (such as ‘C0184511, improved’, ‘C0205360, stable’ or ‘C0332271,
worsening’). Although many of these codes are predefined in drop-down lists to
enable rapid and accurate coding, some events necessarily require a new code. In
this case, a free text string can be entered by the clinician to see a range of
possible codes to select from. We found that spell checking, general abbreviation
dictionaries and personalized abbreviation dictionaries were necessary to enable
clinicians to find relevant codes in a timely manner.
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(b ) Extracting clinical data from text

Much of the data about patients that are not directly measured by
computerized instruments is available only in the form of unstructured natural
language statements by clinicians. These data can be typed directly by a clinician
or transcribed from dictation or handwritten notes. Unfortunately, manual data
entry practices and conversion of data into electronic medical records are prone
to error. One study (Dean et al. 1995) showed that the most common types of
data errors in 1995 were omitted and incorrect doses (in UK hospitals) and
incorrect and unordered doses (in US hospitals). More recently, Lisby et al.
(2005) showed that errors in medication ordering and transcription can be
frequent and lead to potentially adverse events. However, the most common
types of error throughout the medication process were found to be lack of
convenient input modalities (forms or entry terminals), unordered drugs,
omission of drugs/dosage levels and lack of identity control.

However, inaccurate transcription and data entry is not confined to
medications. Recently, we compared manual acceptance of measurements of
heart rate and blood pressure from bedside monitors, with measurements gated
by robust automatic measures of signal quality (Hug & Clifford 2007). Results
showed that the clinically verified BP values exhibit a small but significant bias
towards overestimation. In particular, we demonstrated that hypotensive events
are often missed by the action of human recording. Other studies (Nelson et al.
2005; Vawdrey et al. 2007) have also demonstrated the inherent errors in human
recording of physiological signals.

Regardless of the method of transcription, the notes must be interpreted by
fairly sophisticated algorithms in order to turn them into a structured form that
is suitable for searching, modelling and further analysis. We have found that the
notes taken by clinicians during the delivery of care are often most difficult to
analyse, even when they are typed rather than handwritten. Perhaps owing to
the pressing need for speed, these are often poorly organized, full of non-standard
abbreviations and typographic errors, and thus pose the greatest challenges to
automated processing. By contrast, more formal notes such as discharge
summaries, which summarize a patient’s hospital stay, are often more carefully
written, consciously trying to inform readers other than the writer, and are thus
easier to analyse.

We have developed a computer program to extract diseases and procedures
attributed to patients in discharge summaries as an aid to semi-automated
annotation of our large case collection. The program maps phrases from the text
to the approximately 6 million terms that represent approximately 1.5 million
concepts listed in the UMLS, and then maps these to the approximately 1 million
listed SNOMED-CT concepts. (In practice, of course, very few of these actually
appear in clinical texts.) As reported in Long (2007), this program was able to
find 93 per cent of the 1326 clinically significant concepts that had been identified
in 96 discharge summaries through a manual review by one to three clinicians.
However, the program achieves this high level of recall by allowing many
irrelevant and misclassified concepts (almost three times as many as the relevant
concepts that it finds). Because the purpose of this program was to help
annotators find all the relevant concepts, and it is much easier in annotation to
reject an unneeded concept than to code a concept de novo, this bias is
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acceptable for our application. Nevertheless, we would prefer to have an
automated annotation tool that finds almost all the needed concepts but few
spurious ones.

If we could build a program that ‘understands’ natural language, then it would
be relatively easy to pick out the concepts we want to recognize. However, the
problem of understanding text is thought to be artificial intelligence complete—it
would require a program with true human-level intelligence. Of course, we are
not anywhere near that in our technical abilities. Therefore, researchers have
taken a range of approaches to the extraction problem. At one extreme are
systems that use the best available computational linguistics methods to assign
likely parts of speech and semantic categories to individual words, to parse the
linguistic structure of the phrases, clauses, sentences and paragraphs that express
information, and thus to do a deep analysis of the text. Our program takes a
more minimalist approach, dividing the text using punctuation, conjunctions,
numbers and a few verbs into phrases. Within these, it looks for the maximum
length sub-phrase that matches a UMLS concept, without regard to the
surrounding text. We have demonstrated that this approach works well when
sensitivity is the overriding concern. It needs further enhancement when
elimination of irrelevant concepts is important (e.g. when a disease name is
mentioned in a note, but is not associated with the patient).
5. Summary

Over the last 5 years, we have encountered significant barriers to the analysis of
data in the ICU. These include inaccuracies in time stamps, the sparseness or
incompleteness of information (such as when databases are not fully integrated,
or events are not recorded), non-specific labelling (such as when free text is used
instead of a standard medical lexicon), contradictory information (such as when
two monitors disagree about a measurement) and simply incorrect information
(such as FAs). To some extent, we have addressed many of these issues using
data fusion techniques, model construction and automated coding. However, the
issues described in this paper still present significant barriers to the use of ICU
data for decision support, particularly with respect to the sparseness of the data
and the non-specific labelling of clinical information in free text. Despite this,
current trends in hospital information systems provide for an optimistic horizon,
as increasing volumes of more frequent data are being captured automatically
from monitors (together with event codes and signal quality indicators). Hospital
information systems are also moving towards using universal lexicons.
Furthermore, current trends towards open data storage formats and interchange
protocols mean that open source tools we have developed are likely to be
generally useful on a wide variety of data.
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