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Transport measurements on the cuprates suggest the presence of a quantum critical
point (QCP) hiding underneath the superconducting dome near optimal hole doping. We
provide numerical evidence in support of this scenario via a dynamical cluster quantum
Monte Carlo study of the extended two-dimensional Hubbard model. Single-particle
quantities, such as the spectral function, the quasi-particle weight and the entropy, display
a crossover between two distinct ground states: a Fermi liquid at low filling and a non-
Fermi liquid with a pseudo-gap at high filling. Both states are found to cross over to
a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbour
hopping t ′, we find a classical critical point at temperature Tc. This classical critical
point is found to be associated with a phase-separation transition between a compressible
Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the
pseudo-gap state, respectively. Since the critical temperature Tc extrapolates to zero
as t ′ vanishes, we conclude that a QCP connects the Fermi liquid to the pseudo-gap
region, and that the marginal Fermi-liquid behaviour in its vicinity is the analogue of the
supercritical region in the liquid–gas transition.
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1. Introduction

(a) Relevance of quantum criticality in the cuprates

The unusually high superconducting transition temperature of the hole-doped
cuprates [1] remains an unsolved puzzle, despite more than two decades of intense
theoretical and experimental research. Pairing, which has a d-wave symmetry and
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Figure 1. The phase diagram of the cuprates. As a function of temperature and doping,
the cuprates display antiferromagnetic order at low doping, a non-Fermi-liquid pseudo-gap
region at intermediate doping and a metallic region at higher doping. Around optimal doping,
superconductivity develops, and above the superconducting dome, a strange metal with non-Fermi-
liquid properties appears. T ∗ separates the pseudo-gap from the marginal Fermi-liquid phase. TX
is the crossover temperature between the Fermi and the marginal Fermi-liquid regions. A QCP
hides underneath the superconducting dome near optimal hole doping. (Online version in colour.)

a short coherence length, but a too high Tc to be accounted for by Bardeen–
Cooper–Schrieffer (BCS) theory [2], is not the only unconventional property of
these materials. Their phase diagram, shown in figure 1, is a landscape of exotic
states of matter. Undoped cuprates are Mott insulators with antiferromagnetic
long-range order [3]. Antiferromagnetism collapses upon small doping, and it is
replaced by a pseudo-gap state characterized by a suppression of spectral weight
along the antinodal direction. Further doping turns the system into a conventional
Fermi-liquid metal. Between the Fermi-liquid and the pseudo-gap regions lies a
strange metal phase with T -linear resistivity. The superconducting dome emerges
in the crossover between the pseudo-gap and the Fermi-liquid regions at lower
temperatures.

Strong electronic correlations are the cause of the rich phase diagram of cuprate
superconductors [4]. The same strong correlations render traditional theoretical
approaches, such as perturbation theory and Fermi-liquid theory, inapplicable.
Some recent conceptual progress has been achieved by associating the optimal
Tc with a quantum critical point (QCP), lying underneath the superconducting
dome and connecting the pseudo-gap and Fermi-liquid regions [5,6]. Unlike a
classical critical point, a QCP affects the behaviour of the system in a wide range
of temperatures and might explain the emergence of a T -linear resistivity up to
room temperature.

Experimental evidence for a QCP comes from transport [7–9] and
thermodynamic measurements [10]. Angle-resolved photoemission spectroscopy
(ARPES) [11,12] and quantum oscillation measurements [13] show that, in the
pseudo-gap region, the Fermi surface consists of small pockets that have a
different topology than the large Fermi surface present in the Fermi liquid. It
is reasonable to assume that those two states are orthogonal to one another and
are connected through a transition or a crossover region. Additional evidence
in support of quantum criticality comes from measurements of the Kerr signal
in YBa2Cu3O6+x by Xia et al. [14]. They find that, at the pseudo-gap crossover
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temperature, T ∗, a non-zero Kerr signal develops sharply and persists even inside
the superconducting dome. This is consistent with earlier neutron-scattering
measurements by Fauqué et al. [15], which show the development of magnetic
order in the pseudo-gap phase.

In this article, we review numerical evidence of quantum criticality in the
Hubbard model, the de facto model for the cuprates that appeared in earlier
publications. In those cited works, the Hubbard model is solved using the
dynamical cluster approximation (DCA) in conjunction with several quantum
Monte Carlo (QMC) cluster solvers. In all calculations relevant for the phase
diagram, we neglect the superconducting transition. The interplay between the
QCP and superconductivity will be discussed in a future publication (S.-X. Yang
et al. 2010, unpublished data). In this review, we focus on the thermodynamic
quantities, such as the entropy and the chemical potential, and also on single-
particle quantities, such as the spectral weight and the quasi-particle weight. The
thermodynamic properties give unbiased evidence of quantum criticality, whereas
single-particle properties may be used to gain more detailed insight on the ground
state. Both sets of quantities rely on the evaluation of the self-energy, which can
be calculated using quantum cluster methods.

At a critical interaction-dependent filling, we find that the entropy exhibits
a maximum, the quasi-particle weight displays a crossover from Fermi-liquid
to pseudo-gap behaviour and the spectral function shows a wide saddle-point
region crossing the chemical potential. This is consistent with the presence of a
QCP, since the lack of an energy scale results in an enhanced entropy at low
temperatures. We also find that, by tuning an appropriate control parameter,
the next-nearest-neighbour hopping, t ′ > 0, the QCP becomes a classical critical
point associated with a phase-separation transition. This QCP affects a very
large supercritical region of finite t ′. For negative values of t ′, we believe that
the pseudo-gap and the Fermi-liquid regions will be separated by an extended
crossover region of doping. We present our findings in two sections. In §2, we
discuss the single-particle spectra and the thermodynamic properties of the
t ′ = 0 Hubbard model. In §3, we discuss the phase separation in the t ′ > 0
Hubbard model.

(b) Hubbard model

Shortly after the discovery of high-Tc superconductors, Anderson [16] suggested
that the Hubbard model captures the basic properties of the high-temperature
superconductors and Zhang & Rice [17] demonstrated that only a single band is
needed. The single-band Hubbard model is represented by the Hamiltonian

H = −t
∑
〈i,j〉,s

[c†
iscjs + H.C.] + U

∑
i

ni↓ni↑, (1.1)

where c†
is (cis) is the creation (annihilation) operator of an electron at site i and

spin s, nis is the corresponding number operator, t is the hopping parameter
between nearest-neighbour sites and U is the on-site Coulomb repulsion. Despite
its apparent simplicity, the Hubbard model is notoriously difficult to solve. No
analytical solutions exist except in one dimension [18–20]. However, tremendous
theoretical and computational efforts have resulted in approximation schemes
that provide access to the physics of this model in higher dimensions. In
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this article, we also discuss results for the generalized Hubbard model that
includes hopping between next-nearest neighbours with amplitude t ′:

H = −t
∑
〈i,j〉,s

[c†
iscjs + H.C.] − t ′ ∑

〈〈i,l〉〉
[c†

iscls + H.C.] + U
∑

i

ni↓ni↑. (1.2)

Important progress in our understanding of strongly correlated models
has been achieved by the development of finite-size methods, including
exact diagonalization and QMC. The latter works well in the simulation
of bosonic systems where creation and annihilation operators commute.
However, owing to the minus-sign problem associated with the anticommutation
relations of fermionic operators, QMC is limited to small lattice sizes and
consequently gives questionable predictions for correlated electronic systems in
the thermodynamic limit.

Another successful approach is the dynamical mean-field approximation
(DMFA), which treats the local dynamical correlations explicitly and non-local
(inter-site) correlations in a mean-field approximation [21–24]. This technique
becomes exact in the limit of infinite dimensions [25,26]. However, when applied
to finite dimensions, the DMFA fails to describe the renormalization effects due
to momentum-dependent modes and the transitions to phases with non-local
order parameters. Thus, DMFA misses physical phenomena that are abundant
in strongly correlated systems, such as the development of spin or charge-
density wave phases, localization in the presence of disorder, spin-liquid physics,
unconventional superconductivity, etc.

The limitations of the DMFA are addressed by cluster mean-field theories.
Those fall into two categories [27]: the cluster dynamical mean-field theory
(CDMFT) [28], which is formulated in real space, and the dynamical cluster
approximation (DCA) [29], which is formulated in momentum space. In both
cases, the system is viewed as a cluster embedded in an effective medium. The
formal difference between DCA and CDMFT is that, in real space, the DCA
cluster satisfies periodic boundary conditions, whereas the CDMFT cluster is
open. The two methods should give the same results for large enough clusters. In
this work, we present DCA [29,30] results.

DCA treats short-ranged correlations explicitly, while longer-ranged ones are
approximated by the mean field. By increasing the cluster size, the length scale of
the explicitly treated correlations can be gradually increased while the calculation
remains in the thermodynamic limit. In momentum space, the DCA can easily
be conceptualized as the approximation in which the self-energy is calculated
using the coarse-grained Green function. QMC-based solvers such as Hirsch–
Fye (HFQMC) [31], continuous-time (CTQMC) [32] and determinantal quantum
Monte Carlo (DQMC) [33] are used to solve the cluster problem. QMC methods
are often formulated in imaginary time and an analytic continuation to real time
is necessary to evaluate physical quantities. Fortunately, powerful techniques such
as the maximum entropy method (MEM) [34,35] are able to successfully select
the most likely solution.

Even though quantum cluster schemes have provided a tremendous
breakthrough in our understanding of the Hubbard model, they are also subject to
limitations. QMC solvers suffer from the sign problem, which scales exponentially
with inverse temperature, interaction strength and cluster size. This limits the
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application of the method to relatively small cluster sizes, higher temperatures
and intermediate interactions. The limitation in the cluster size is particularly
problematic close to a phase transition where the correlation length diverges.
The coarse graining also limits the momentum resolution, which for typical
cluster sizes is too small to capture detailed features of the spectra, such as
van Hove singularities. For a Fermi liquid, this is not a limitation since the
physics is dominated by the low frequencies in which the self-energy is momentum
independent. However, intrinsically anisotropic states, such as the pseudo-gap, or
possibly the quantum critical (QC) region, can be captured only approximately.
Finally, MEM uses Bayesian statistics to find the most likely spectra for the QMC
data, subject to sum rules, such as conservation of the spectral weight. Because
of the statistical errors in the QMC data, the frequency spectrum resolved using
MEM has a limited resolution.

Despite those limitations, progress can be achieved in accessing the QC region
by algorithmic optimizations. A truly universal way to deal with the severity of
the sign problem is to vastly increase the statistics, using massively parallel QMC
algorithms with highly optimized codes.

2. From Fermi liquid to pseudo-gap

A great advantage of the DCA is its ability to evaluate the self-energy as a
function of momentum k and Matsubara frequency iun , S(k, iun). From the self-
energy, various single-particle quantities, such as the spectral function, A(k, u),
the quasi-particle weight, Zk, and the energy can be derived. All those quantities
provide insight on the ground state of the system. In this section, we will show
how the transition from the Fermi-liquid to the pseudo-gap state is reflected in
such single-particle quantities.

(a) Self-energy

Typical Matsubara frequency self-energy curves for various values of doping are
shown in figure 2. The real part of the self-energy, �S(iun), has large momentum
dependence in the pseudo-gap region (top right panel), where the opening of
the gap along the antinodal direction can be observed. The vanishing of the
	S(iun) for iun → 0 for n = 0.75 and n = 0.85 is consistent with Fermi-liquid and
marginal Fermi-liquid behaviour, respectively. But, in general, it is difficult to see
signatures of the physics of the model in the Matsubara frequency self-energy.

(b) Spectral function

The single-particle spectral function shows a clear evolution from a Fermi-
liquid to a pseudo-gap state as the filling increases towards half-filling. Figure 3
displays a density plot of the spectral function, A(k, u) = −(1/p)	G(k, u), which
is extracted by analytically continuing the imaginary-time Green function. At
low filling, n < 0.85, the spectral function exhibits a typical Fermi-liquid form.
A notable characteristic is the presence of a wide saddle-point region, reminiscent
of a van Hove singularity [36], along the antinodal direction. Around the critical
filling of n = 0.85, this saddle-point feature crosses the chemical potential. This
crossing results in a sharp peak in the density of states (DOS) [37], which displays
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Figure 2. (a) Real and (b) imaginary components of the cluster self-energy in imaginary time as a
function of bun as evaluated by CTQMC for Nc = 16, U = 6t, bt = 17.5 and fillings n of (i) 0.75,
(ii) 0.85 and (iii) 0.95. The inset in the upper left panel shows a map of the Brillouin zone (enclosed
in the square) using different colours for the inequivalent cluster sites. The different self-energy
curves correspond to the different sites on the irreducible wedge of the cluster. (Online version
in colour.)

low-energy particle–hole symmetry [38]. At higher filling, n > 0.85, the spectral
weight collapses along the antinodal direction and a pseudo-gap opens. The Fermi
surface obtained by extremizing |Vnk| shows a similar evolution (see figure 3b).
The Fermi-liquid region consists of a large hole pocket, which extends and touches
the edges of the Brillouin zone (0, ±p), (±p, 0) at n = 0.85. In the pseudo-
gap region, the Fermi surface consists of four Fermi arcs centred around the
nodal points, similar to the ones obtained from ARPES. These results clearly
demonstrate that the DCA can capture qualitatively the evolution of the ground
state from a Fermi-liquid to a pseudo-gap phase.

(c) Quasi-particle weight

Whereas the spectral function gives a qualitative understanding of the ground
state, it relies on the analytic continuation of numerical data. Since extracting
quantitative information from analytically continued data is difficult, a more
robust approach is to rely on imaginary time quantities, such as the quasi-particle
weight Z (k). Since the quasi-particle weight is finite across a Fermi surface, but
vanishes if the spectrum is incoherent, it will allow us to clearly distinguish
between a Fermi-liquid and a pseudo-gap state. The quasi-particle weight can
be directly obtained from the Matsubara frequency self-energy as Z0(k) = [1 −
	S(k, iu0)/u0]−1, where u0 = pT is the lowest fermionic Matsubara frequency.
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Figure 3. (a) Density plots of the spectral function A(k, u) for (i) Fermi-liquid, (ii) marginal Fermi-
liquid and (iii) pseudo-gap regions for filling n of (i) 0.75, (ii) 0.85 and (iii) 0.95, respectively, which
were obtained by applying MEM on the self-energy of figure 2. The momentum is along the path
G(0, 0) → M(p, p) → X(p, 0) → G(0, 0). Note that the discontinuity along G(0, 0) → M(p, p) in the
left and middle panels is an artefact of our interpolation algorithm. A wide saddle-point region
between X and G sits above the chemical potential in the Fermi-liquid region and crosses it around
the critical filling (n = 0.85). In the pseudo-gap region, this feature sits below the chemical potential,
leaving a gap along the antinodal direction behind it. (b) Fermi surface as extracted from |Vnk| in
(i) Fermi-liquid, (ii) marginal Fermi-liquid and (iii) pseudo-gap regions showing the development
of the pseudo-gap in the antinodal direction. The lines mark the magnetic zone boundary. The
Coulomb repulsion is U = 6t, the temperature T = 0.069t and the cluster size Nc = 16. The energy
unit is 4t. (Online version in colour.)

At the limit T → 0 and for a well-behaved self-energy, Z0(k) converges to the
quasi-particle weight, Z (k). Figure 4a displays ZAN = Z0(u0 = pT , k ‖ (0, 0) →
(0, p)), the Matsubara quasi-particle weight along the antinodal momentum
direction for U = 6t and a cluster of size Nc = 16 [37]. The momentum k at
the Fermi surface is determined by maximizing |Vn(k)|. It can be seen that
ZAN exhibits two distinguishable behaviours: for n > nc = 0.85 the quasi-particle
weight vanishes, whereas it approaches a finite value for n < nc. The n > nc region
corresponds to the pseudo-gap state in which the spectral weight collapses along
the antinodal direction, while the n < nc region behaves as a Fermi liquid.

The temperature dependence of ZAN (figure 4a) not only provides information
about the ground state but also allows the extraction of relevant energy scales.
By comparing the numerical results with analytical expressions derived from
particular phenomenological forms of the self-energy, we obtain TX and T ∗.
At low filling, n < nc, the high-T dependence of ZAN is best fitted by a marginal
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Figure 4. (a) The antinodal quasi-particle fraction ZAN as a function of temperature for different
values of filling, U = 6t and cluster size Nc = 16 (the unit of energy is 4t). The onset of the pseudo-
gap region is determined by the vanishing of the antinodal spectral weight at zero temperature. The
dashed and solid lines represent fits of the low-temperature (T < 0.3) data to marginal Fermi-liquid
(red solid curves), Fermi-liquid (black solid curves) and crossover forms (dashed black curves),
respectively. The arrows show the corresponding crossover temperatures TX and T ∗. The value of
T ∗ presented here is obtained from the spin susceptibility as explained in Vidhyadhiraja et al. [37],
but is consistent with the one extracted from the fitting forms. The ratio ZN/ZAN of the quasi-
particle weight in the nodal (p, p) and antinodal (0, p) directions (inset) diverges as the pseudo-gap
develops in accordance with figure 3. (b) The crossover temperatures TX (open squares) and T ∗
(open circles) as a function of filling as extracted from the temperature dependence of ZAN [37] for
the same parameters. (Online version in colour.)

Fermi-liquid form, whereas for low T , the data are best fitted by a Fermi liquid.
The crossover occurs at a temperature TX, which is extracted by fitting with a
crossover function, and is accompanied by a change in the sign of the curvature
of ZAN. At higher filling (n > 0.85), the high-temperature ZAN can also be fitted
by a marginal Fermi liquid, whereas at low temperatures it cannot. The crossover
temperature T ∗ can be extracted as the lowest temperature at which the marginal
Fermi-liquid fit lies within the statistical error. However, a more accurate value
can be obtained from the bulk spin susceptibility, which exhibits a peak at T ∗,
and the two values are found to be consistent [37]. The crossover temperatures
TX and T ∗ are shown in figure 4b. Both of them converge to zero as the filling
approaches nc = 0.85, which is the same value for which the peak in the DOS [37]
crosses the chemical potential.

(d) Thermodynamics

A different perspective at the transition from a Fermi-liquid to the pseudo-gap
state comes from the evaluation of the entropy [39]. We obtain the entropy by
integrating the energy using the formula

S(b, n) = S(0, n) + bE(b, n) −
∫b

0
E(b′, n) db′, (2.1)
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Figure 5. (a) The filling dependence of the entropy divided by temperature, S/T , for various
temperatures at U = 6t and Nc = 16. With decreasing temperature, a peak develops around the
critical filling of nc = 0.85. (b) The temperature dependence of the chemical potential m for different
fillings. At the critical filling nc, m becomes temperature independent at low temperatures. (Online
version in colour.)

where b is inverse temperature and S(0, n) is the infinite-temperature entropy.
Equation (2.1) is appropriate for QMC calculations, because the integration
reduces the statistical error. The challenge is to have good enough statistics to
control the error of the surface term, bE(b, n). In Mikelsons et al. [40], large
statistics was possible simply by using large computational resources. The entropy
divided by the temperature, shown in figure 5a, exhibits a maximum at exactly
the same critical filling that was identified before from the spectral function and
the quasi-particle weight. In figure 5b, we show the chemical potential, m, as a
function of temperature. We note that, at the critical filling dm/dT = 0, since the
entropy and the chemical potential are related by the Maxwell relation:(

vS
vn

)
T ,U

= −
(

vm

vT

)
U ,n

. (2.2)

Also the temperature dependence of the chemical potential can be used as a
practical criterion to identify the location of the critical filling, because evaluating
the chemical potential is much less computationally intensive than evaluating
the entropy. Using this criterion, we investigate the important question of the
dependence of nc on the Coulomb repulsion U . As shown in figure 6, we find that
increasing U reduces the critical filling and thus enlarges the pseudo-gap region in
the phase diagram. Our results follow the trend proposed in earlier arguments [38]
according to which the critical filling decreases in order to reach the atomic limit
value of nc = 2/3.

In this section, we have shown that several single-particle quantities are
consistent with the presence of a QCP. The qualitative form of the single-particle
spectrum shown in figure 3 is fundamentally different in the Fermi-liquid and the
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Figure 6. (a) The chemical potential as a function of temperature for fillings of n = 0.85 and 0.90
and for a variety of interaction strengths U for Nc = 12. (b) The critical filling, defined by the filling
in which vm/vT = 0 versus U . The critical filling decreases with U monotonically and is projected
to reach the atomic limit value of nc = 2/3 at Uc = 30t. (Online version in colour.)

pseudo-gap regions, which points to orthogonal ground states. The temperature
dependence of the quasi-particle weight reveals the presence of two crossover
temperatures T ∗ and TX, which converge to zero at nc as shown in figure 4b.
If the crossover temperatures TX and T ∗ constitute energy scales that suppress
degrees of freedom, their vanishing at nc means that there are no relevant energy
scales to quench the entropy and therefore it collapses at a slower rate, which is
consistent with the peak of the entropy observed at nc. The natural next step to
investigate quantum criticality is to access the QCP. However, the fermion-sign
problem severely limits the applicability of QMC techniques close to a QCP. It is
possible, however, as we will discuss in §3, that by tuning an appropriate control
parameter, the critical point may be lifted to finite temperature and thus studied
with QMC.

3. Phase separation and quantum criticality

Experiments suggest that cuprate superconductors are susceptible to charge
inhomogeneities, such as stripes or chequerboard modulations [41]. These
inhomogeneous charge patterns have stimulated intense theoretical and
experimental research. Here we will consider the possibility that those charge
instabilities are evidence that the cuprates are close to a phase-separation
transition, and this proximity may be related to the nature of the QCP.

Our findings suggest that the Hubbard model displays a phase diagram similar
to the one for the gas–liquid transition with Mott liquid (ML) and Mott gas (MG)
regions. Figure 7a shows a possible phase diagram for the Hubbard model as a
function of T , |m| and n. The red-coloured surface is a schematic of the region
where the ML and MG states, characterized by different densities, coexist for
T < Tc. The critical point is located at temperature Tc, filling nc and chemical
potential mc. One can go from one state to the other either smoothly, by avoiding
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T and m, the filling has two values. (b) Filling as a function of chemical potential for several
temperatures in the vicinity of the charge-separation critical point. The number next to each curve
represents the temperature. The coexisting phases are an incompressible Mott liquid at n ≈ 1 and
a compressible Mott gas at n ≈ 0.93. The critical temperature is Tc = 0.1t. The blue dashed line
represents the surface of metastability that is not accessible within the DCA. The green dotted
line represents the isothermal of the metastable state inside the phase coexistence region (grey
zone). At the critical point, the isothermals for T > Tc cross. The inset shows the scaling curve
(n − nc)(T − Tc)−b versus (m − mc)(T − Tc)−bd in arbitrary units for mc = 3t, nc = 0.96, Tc = 0.1t.
The scaling exponents, b = 0.10 ± 0.05 and bd ∼ 1, are roughly consistent with the Ising universality
class. (Online version in colour.)

the phase-separation region, or through a first-order transition by crossing it.
Right on the phase-separation region, the density has two values for given values
of m and T .

Macridin et al. [42] provided compelling evidence of phase separation in the case
of the generalized Hubbard model (equation (1.2)) with positive next-nearest-
neighbour hopping t ′ = 0.3 t and U = 8t. Using the DCA in an Nc = 8 cluster
with HFQMC as the cluster solver, they showed that below a critical temperature
Tc ∼ 0.1t a first-order transition occurs, which is identified by a hysteresis in the
n versus m curve for T < Tc. Hysteresis curves have been used to identify first-
order transitions within dynamical mean-field theory [21]. As shown in figure 7b
with more precise data obtained using DQMC as the cluster solver, the hysteresis
is between two states of different filling, the ML at half-filling and the MG at a
filling of about 0.93 for T = 0.071t. The ML is incompressible and insulating. Its
compressibility, which is the slope of the filling versus m curve in the high-filling
side of the hysteresis curve, is small and decreases with temperature. Also, the
DOS of the ML phase, shown in figure 8a, exhibits a gap as expected for an
insulator. On the other hand, the MG is compressible and metallic; the DOS is
finite at the chemical potential (m = u = 0), as displayed in figure 8b.
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Figure 8. The DOS of (a) Mott liquid and (b) Mott gas states at T = 0.077t (dotted line) and
T = 0.057 (solid line). The Mott liquid is an incompressible insulator with a pseudo-gap, while the
Mott gas is weakly compressible with a Fermi-liquid peak in the DOS. (Online version in colour.)

The analogy to the well-known phase diagram of a liquid–gas mixture, such
as water and steam, is useful to understand this phase transition. At low
temperatures, there is a region in the pressure–volume phase diagram in which
water and steam coexist for a range of pressures. As the temperature is increased,
the region of coexistence contracts and finally terminates at a critical point where
the compressibility diverges. In the pressure–temperature phase diagram, this
region of coexistence becomes a line of first-order transitions that terminates at
a second-order point where the water and gas become indistinguishable and the
compressibility diverges. Since the line terminates, it is possible for the system
to evolve adiabatically from steam to water without crossing a phase transition
line; therefore, the steam and water must have the same symmetry.

In the ML and the MG system, the chemical potential m replaces the pressure
and the density n replaces the volume of the water–gas mixture. Because the
order parameter separating the ML from the MG, the density n, does not have
a continuous symmetry, order may occur at finite temperatures, and the ML–
MG transition will most probably be in the Ising or lattice gas universality class.
Within this context, one may then understand the hysteresis of figure 7b. The
solid lines are isotherms that show how the system evolves with increasing density.
At the temperature T = Tc, the compressibility diverges at the critical filling. As
the temperature is lowered further, there is a region where the ML and MG
coexist. Inside this region, the isothermals contain unphysical regions of negative
compressibility (dashed line in figure 7b) along with metastable regions of positive
compressibility. The metastable branch of the isothermal in the vicinity of the ML
is a ‘supercooled’ ML, whereas the one in the vicinity of the MG is a ‘superheated’
MG. The translational invariance of DCA along with the stabilizing effect of
the mean-field host enables access to those metastable states. However, the real
physical system will phase separate and the two phases will coexist in equilibrium
(dotted line in figure 7b).

We can sketch the phase diagram in the T–m plane using the analogy to the
water–steam mixture. The most generally applicable rule governing the shape of
phase diagrams was established by Gibbs. For a system of c conserved components
and f phases, the Gibbs constraint is given by the relation F = c − f + 2, where F
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Figure 9. (a) The chemical potential–temperature phase diagram of the ML and MG mixture for
t ′ > 0. The ML and MG coexist on a line of first-order transitions with positive slope. Since ML
and MG have the same symmetry, this line can terminate in a second-order critical point. The
blue dashed lines define the boundaries of the supercritical region where the ML and MG cannot
be distinguished. Outside this region, either the ML or MG character dominates. (b) The chemical
potential–temperature phase diagram for t ′ → 0. The first-order line is absent but supercritical
region remains as a QC region. In the Hubbard model, the lines T ∗ and TX (figure 4b) define the
boundaries of this region. For negative values of t ′, the ML and MG regions will be separated by
an extended crossover region of doping. (Online version in colour.)

is the number of independent variables needed to specify the state of every phase.
In this case, as in the water–steam system, the number of components c = 1,
since the particle number is conserved. At a location in the phase diagram where
only one phase exists, F = 1 − 1 + 2 = 2, so there are two independent variables,
and the phase diagram is a surface on the m, T and n three-dimensional space.
There will be places in the phase diagram where two phases exist simultaneously;
then F = 1 − 2 + 2 = 1, implying that two phases coexist only along lines in the
phase diagram. At the lines in the T–m plane where two phases coexist, n is
also determined for each phase, but its value can be different. That is a line of
first-order transitions.

Additional information about the lines of first-order transitions is obtained
from Clapeyron’s equation. The Gibbs free energy G = E − TS − mN , and dG =
−S dT − N dm, must be the same for the coexisting phases on a line. If we label
the two phases 1 and 2, then

(S1 − S2) dT = −(N1 − N2) dm. (3.1)

If we identify the latent heat L = (S1 − S2)T , then dm/dT = −L/(TDn)
represents the slope of the first-order transition line. Since the latent heat L
of going from ML to MG is positive, but dn is negative, the slope dm/dT of the
line of first-order transitions is positive.

Above the critical point terminating the ML–MG transition, the system
displays supercritical behaviour in a region where the gas and the liquid cannot
be distinguished thermodynamically (cf. figure 9). It is possible for the system to
evolve adiabatically through an anticlockwise path from deep in the MG region,
through the supercritical region, into the ML region. At the lower edge of the
supercritical region, the system loses the Fermi-liquid character of the MG, and
at the upper edge, it begins to acquire the pseudo-gap character of the ML.
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Figure 10. (a) Filling, n, versus chemical potential, m, for T = 0.077t, Nc = 16, U = 6t and various
t ′ is shown in solid lines and the compressibility, dn/dm, in dashed lines. A critical filling, identified
by the peak in the compressibility, appears at higher temperatures and fillings as t ′ is increased.
The inset shows the t ′ dependence of the critical filling, nc. (b) Schematic phase diagram of the
Hubbard model in the m, t ′ and T space (neglecting superconductivity). The classical critical point
turns asymptotically into a QCP as t ′ → 0. (Online version in colour.)

Let us discuss now how this phase separation, which occurs at finite
temperature, is related to quantum criticality. The key parameter is the next-
nearest-neighbour hopping, t ′. For t ′ = 0, there is no evidence for phase separation
at finite T , but such a phase separation occurs for positive t ′. Khatami et al. [43]
performed a systematic analysis of the phase diagram of the extended Hubbard
model as a function of t ′. As shown in figure 10a, the compressibility, cc = dn/dm,
exhibits a peak for all positive t ′ at a critical filling that depends on t ′. The width
of the peak measures the distance from the critical temperature: the sharper
the peak, the closer to Tc the employed temperature is. We see that the critical
temperature increases with t ′ and it starts from Tc = 0 at t ′ = 0. These results
point to the phase diagram of figure 10b. At a positive t ′, a charge separation
occurs at temperatures T < Tc(t ′) and at a critical filling nc(t ′) between an
incompressible and insulating ML and a compressible metallic MG. Right at Tc,
there is a terminating second-order critical point. By decreasing t ′, this second-
order critical point is pushed down to lower temperatures. Presumably, the line
of second-order critical points terminates at the QCP.

Such a scenario constitutes a new path to quantum criticality as it is
closely tied to charge fluctuations rather than spin fluctuations. However,
numerous simulations suggest that a finite positive t ′ enhances antiferromagnetic
correlations, and since phase separation is only present for t ′ > 0, it suggests
that it is driven by strong spin correlations. In addition, previous simulations
incorporating Holstein phonons to the Hubbard model found that phonons also
enhance the phase-separation instability [44]. As t ′/t → 0 (and the electron–
phonon coupling vanishes), the phase-separation critical point approaches zero
temperature, becoming a QCP. Here, the first-order behaviour is absent from the
phase diagram (figure 4b), leaving only the adiabatic path from the ML to the
MG, which passes through the supercritical region, which is now the QC region.
The crossover scale TX and the pseudo-gap scale T ∗ are now understood as the
boundaries of the QC region. As we cross the line of T ∗ from the QC region
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into the ML region, the characteristics of the ML become apparent, including the
pseudo-gap in the DOS and the insulating behaviour. As we cross the line of TX
from the QC region into the MG, the characteristics of the MG become apparent,
including Fermi-liquid formation.

Those calculations certainly do not elucidate the nature of the ML and MG
states in real materials. The long-ranged nature of the Coulomb interaction
prevents true charge-separated states, but the phase separation we observe may
also correspond to other charge instabilities, such as stripes or chequerboard
patterns. To distinguish between different charge instabilities, systematic
calculations in much larger clusters are necessary, which are not practicable
at the moment. However, whatever the type of order, those calculations
provide convincing evidence for the existence of a first-order transition at low
temperatures. Such a transition is similar to the liquid–gas or the ferromagnetic
transition, and its phase diagram would look like figure 7a: a first-order line of
coexistence that terminates at a critical point at a critical temperature Tc and a
critical filling nc.

4. Conclusions

The presence of a QCP at finite filling in the cuprate phase diagram is a topic of
active theoretical and experimental research. Quantum cluster methods are able
to shed some light on this phase diagram. By studying single-particle quantities
for t ′ = 0, such as the spectral function and the entropy, it can be shown that
a Fermi-liquid region at low filling and the pseudo-gap region at higher filling
have different spectral signatures, and are connected through an intermediate
‘marginal Fermi-liquid’ region of maximal entropy. Owing to limitations of QMC,
the ground state and quantum criticality are not accessible. We also neglect the
superconducting phase transition. The connection with quantum criticality is
established by switching on t ′. For positive t ′, a classical critical point emerges
at finite temperature Tc, which increases with t ′. We note that t ′ is not the
only control parameter that may be able to tune the critical point to finite
temperatures, but other parameters, such as phonon coupling, may have the same
effect. The phase diagram around the critical point is similar to that of the gas–
liquid transition, where the incompressible ML and the compressible MG are
the coexisting phases. The strange metal region in this context may be viewed
as the supercritical region lying in the vicinity of the critical point. Within the
scenario we presented, the pseudo-gap region is not characterized by an order
parameter; rather, it must have the same symmetry as the Fermi liquid and the
marginal Fermi liquid, since these regions are connected by an adiabatic path in
the T–m phase diagram. Further investigation is necessary to fully characterize
the pseudo-gap region, and also to investigate the connection of those results with
other scenarios of quantum criticality.
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