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Far-field theory of wave power capture
by oscillating systems
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A new derivation is given of an equation, relating the capture width of a wave power
converter to the polar diagram of the waves generated by the device. The pattern of
waves in the lee of the device is calculated in detail.
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1. Introduction

This study concerns the capture of power from monochromatic plane waves
in the sea by any system of bodies of finite extent, oscillating at the wave
frequency, referred to as a wave energy converter (WEC). It is assumed that linear
superposition applies and second-order effects can be neglected. The amount of
power captured is conveniently expressed by the ‘capture width’ (CW), which is
defined as the width of the incoming wavefront that has the same power as that
being absorbed by the device. The CW can be larger than the size of the WEC.
This can be achieved if the WEC generates waves which interfere destructively
with the surrounding sea waves, so less power is left in the sea and the difference
is transferred to the WEC. Here, we explore this interference mechanism in detail.

The CW of a WEC is often obtained from the forces acting upon it, the motions
induced in the device and how power is transferred to some internal damping
mechanism. Here, we use an alternative approach. The CW is specified by the
energy balance in the sea far away from the device (the ‘far field’), which is
entirely determined by the waves generated by the WEC. The WEC produces
waves by its unmoving presence, its motions and through the forces it exerts on
the sea, variously referred to as scattering, diffraction, radiation, etc. But for
this study we need not distinguish between these processes, nor understand the
mechanisms by which they are produced. The detailed motion of the WEC and
the forces driving it do not enter into the calculation. At a distance, the waves
emitted by the various parts of the WEC by its various processes all combine
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into a single wave, propagating away from the WEC, which we will call the
‘generated wave’. The amplitude and phase of the generated wave may vary with
direction. It will be shown that the CW is entirely specified by this total combined
generated wave.

The generated wave can interfere coherently with the original sea wave,
reducing its amplitude and energy. It can only do this over a useful area if the
two waves have the same frequency and are travelling in the same direction.
The waves emitted by the WEC inevitably propagate away from it. Therefore,
they can only interfere usefully with some part of the original wave which is also
propagating away from the WEC. Paradoxically, from this point of view, it seems
that the WEC extracts power from sea waves which are travelling away from it!
In reality, the incoming wave interacts locally with the WEC, losing energy as it
passes and continues to the far field with reduced amplitude. Because of linear
superposition, the ongoing amplitude can be obtained from the vector sum of the
original wave and the total wave amplitude generated by the WEC.

2. Wave energy converters in the open sea

Let us first consider a WEC, comprising one or more small bodies, close together
in the open sea. The far field is dominated by the incident wave that has
travelled past the system with little change in amplitude. The WEC generates
waves of the same frequency as the incident wave and they interfere with the
original wave stream. Of crucial importance is the interference between the
generated wave and the ongoing original wave, both in the forward direction
(the direction the incident waves are travelling). As they are both propagating in
the same direction, the phase relationship once established continues indefinitely,
giving rise to cancellation and a continuing change in the average power level
in the lee of the device. This turns out to be independent of the distance from
the WEC.

Depending upon the phase of the generated wave, the resultant wave
propagating forwards can have less power than the incident wave, the difference
being captured by the WEC. The power captured is equal to the power subtracted
from the incident waves by interference, minus the power spreading out in all
directions. This leads to a relation between the CW and the angular distribution
of the generated waves, which has been derived in various ways by Newman [1–3],
Mei [3,4] and others [5–9]. But the wave amplitudes used in these formulae are
not all the same and there has been disagreement as to whether it is the forward
emission (in the direction the incident waves are travelling) or the backward
emission (in the opposite direction) that determines the CW. Rainey [10,11
(eqn (2))] has emphasized that the forward emission is paramount in subtracting
energy from the incident waves. The aim of this study is to clarify this issue.

In this study, I derive an alternative, and more general, variant of the Newman–
Mei equation in a new, hopefully more transparent, way and show that for
machines in the open sea it is the wave emitted forwards by the WEC that
determines the amount of power captured. Waves emitted in the backward
direction combine with the incoming wave to give standing waves; in some
locations they reinforce, in others they cancel: the average power level in this
region is unchanged, so the wave emitted backwards cannot influence the CW.
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Figure 1. The wave comes from the left, the generator is at O, calculate the net wave at Q.

3. Forward interference pattern

Figure 1 shows the situation to be considered with the variables to be used.
Assume that linear monochromatic waves travelling in the direction OP of
wavelength l are incident from the left on a wave generator at the same frequency,
located at O. We calculate the wave power at any point Q, y being the distance
PQ along a line transverse to the wave direction. r is the diagonal distance from
the generator at O to the point Q. The amplitude of the original wave reaching
the line PQ is taken as 1. For simplicity, the corresponding wave power per metre
width of wavefront is taken as 1 power unit.

Assume that the generator at O generates a wave of amplitude A at distance
r given by

A = −a

√
l

r
eikreibf (q). (3.1)

The angular function f (q) gives the polar diagram of the generator relative to the
propagation direction of the incident plane waves, taken as q = 0 (the forward
direction). In general, this angular function f (q) is a complex number specifying
the polar diagram in amplitude and phase, but without lost of generality it is
convenient initially to assume that f (0) is real and add b to give the phase of the
radiation at point P relative to the phase of the original wave. This allows us to
adjust the phase to optimize the absorbed power. a is an arbitrary real positive
numerical factor which will be used to adjust the amplitude of the generated wave.
With the negative sign in (3.1), the generated wave will tend to cancel the original
wave at P if b = 0. But we shall see below that this is not the optimum phase for
overall power absorption. Essentially, this is because a circular wave spreading out
from the WEC is interfering with the original linear wave; on average, the circular
wave has to travel slightly further before it overlaps with the original wave.

To calculate the resultant wave at Q, we need the extra phase delay f owing
to the distance r being larger than the distance x . Using Pythagoras in the
triangle OPQ

f = k(r − x) = ky2

2x
, (3.2)
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in which k = l/2p is the wavenumber. If the line PQ is far away, then only waves
emitted at small angles q will be relevant, so the angular function required is f (0).
The real part of the generated wave at Q is

−a

√
l

r
cos(f + b)f (0). (3.3)

Add this to the original wave of amplitude 1 and square it to get the net wave
power per metre at Q, which is

J = 1 − 2af (0)

√
l

x
cos(f + b), (3.4)

in our power units. Here, we are approximating r ≈ x as far as the wave amplitude
is concerned. We also neglect terms in l/x which become negligible at large x when
compared with the leading term in

√
l/x . We are only interested in the ongoing

wave power at very large x .
The parameter b, specifying the phase of the generator relative to the incident

wave, is the same for all points Q, but f changes with the distance y = PQ.
Integrating over all y the total power subtracted from the original wave is

J− = 2af (0)

√
l

x

[
cos(b)

∫∞

−∞
cos

(
ky2

2x

)
dy − sin(b)

∫∞

−∞
sin

(
ky2

2x

)
dy

]
. (3.5)

The integrals are Fresnel integrals of the form
∫∞

−∞
cos

(
pv2

2

)
dv =

∫∞

−∞
sin

(
pv2

2

)
dv = 1. (3.6)

Set v = y
√

k/px to find
∫∞

−∞
cos

(
ky2

2x

)
dy =

∫∞

−∞
sin

(
ky2

2x

)
dy =

√
px
k

. (3.7)

Combining (3.5) and (3.7) gives the total power subtracted from the wave

J− = {cos(b) − sin(b)} × √
2alf (0). (3.8)

The distance x of the line PQ from the generator cancels out, showing that the
ongoing power is independent of this distance. J− is a maximum when b = −p/4
in which case the power subtracted from the wave is

J− = 2alf (0). (3.9)

The amount of power subtracted is independent of the distance x of the line PQ
from the generator. As the wave continues on its way, the interference pattern
changes in width and amplitude, but the integrated effect remains the same.
Figure 2 shows the power in the wave, the integrand of (3.5), as a function of the
transverse distance y with b = −p/4 for two values of x . The dashed line shows
the original power level in each case. If x is doubled, then the pattern is stretched
sideways by the factor

√
2 but its amplitude is reduced by the same factor, so

that the area between the curve and the dashed line remains the same.
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Figure 2. Interference pattern of wave energy versus y at two distances x from the generator with
b = −p/4. The integrand in (3.5) gives the wave power behind the wave energy converter (WEC) as
a function of the transverse distance y. The lower black curve gives the net power at some arbitrary
distance x behind the WEC, whereas the lower dashed line shows the original wave power. There
is a decrease in the centre and interference fringes on both sides. If the distance from the WEC is
doubled, then we get the upper two lines. The corresponding original wave power (dashed line) is
the same as before but both these lines have been displaced upwards for clarity. With x increased
by the factor 2, the amplitude of the interference pattern is reduced by the factor

√
2, but it is

stretched sideways by the same factor; the total energy subtracted from the wave is unchanged.

This means that with b = −p/4 and f (0) real the generated wave, averaged
over the whole ongoing wavefront, is exactly in anti-phase with the ongoing wave
and reduces its amplitude. The phase of the generated wave is specified by (3.1)
and could well be different. For example, if b = +p/4 (or equivalently if b = −p/4
but f (0) is imaginary) equation (3.8) shows that no power is subtracted from the
ongoing wave. In this case, the generated amplitude is, on average, orthogonal
to the amplitude of the ongoing wave and alters its phase but does not reduce
its amplitude. In the most general case, keeping b = −p/4, f (0) can have real
and imaginary components. The real part takes power from the ongoing wave,
whereas the imaginary part changes its phase. (It will be realized that the choice
of reference phase is entirely arbitrary; if we had chosen to work with b = +p/4
instead of −p/4, then the role of the real and imaginary components of f (0) would
be interchanged.)

Note that the circular wave spreading out from the WEC is interfering with the
ongoing linear wave. It appears from the above that, on average, the generated
wave has to travel an extra path length of l/8, which corresponds to setting
b = −p/4 in (3.8).

In figure 2, we see that the net power subtracted from the wave is dominated
by the dip in the centre. Further out, the plus/minus wiggles largely cancel and
contribute little to the power balance. Note that when the generated phase is
optimum, the minimum in the ongoing power is not in the middle, but slightly off-
centre. Also note that further off-centre, the ongoing power is actually increased!
A small advantage may be gained by locating a second wave energy machine not
centrally behind the first but slightly off axis, in a V-formation: reminiscent of
the formation adopted by some birds in flight, perhaps for similar reasons.

As the power pattern is a function of y2/2x , the wake field behind the device is
parabolic, roughly plotted in figure 3. This agrees with the wake field illustration
in Yemm et al. [12 (figs 4b and d)].
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Figure 3. The parabolic wake field pattern behind any wave energy converter.

At large distances, any small possibly complex system of generators operating
at the wave frequency must emit a combined wave with determined phase and
angular distribution f (q), which will have real and imaginary components. So the
above and following calculations are valid for any complex system of generators,
all oscillating at the wave frequency.

As the distance x from the source increases, the interference pattern expands
laterally as

√
x , so it actually contracts in angle. This means that at any

reasonable distance only the forward-generated amplitude f (0) is relevant as
assumed above. Also, once the distance from the generators is large compared
with their size, the interference pattern, plotted in figures 2 and 3, will be the
same for all wave energy devices, however complex, if they have been optimized
in phase.

4. Optimum generator amplitude for maximum power capture

In an ideal system, the generator motions, with the ideal phase and amplitude, are
excited by the incoming wave and the power subtracted from the incident wave
as a result of interference is given by J− in (3.9). Some of this energy is emitted
in other directions and using (3.1) the total energy emitted by the generator is

Jout = a2lI = a2l

∫p

−p

|f (q)|2 dq, (4.1)

in which I is the integral defined by this equation. The remaining energy is
absorbed by the WEC (presumed to have some internal damping mechanism); so
combining (3.9) and (4.1), the energy captured by the WEC is

Jc = J− − Jout = 2alf (0) − a2lI . (4.2)

The generated amplitude is controlled by the parameter a which we now vary
to maximize the energy captured: this occurs when the first term is twice the
second. At the optimum

a = f (0)∫p

−p
|f (q)|2 dq

. (4.3)
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Substituting in (4.2), the captured energy is

Jc = l
|f (0)|2∫p

−p
|f (q)|2 dq

. (4.4)

We have been assuming that a wave of unit amplitude gives unit energy in our
units, so this implies that the optimum CW is given by

CW = l
|f (0)|2∫p

−p
|f (q)|2 dq

. (4.5)

This applies when the generated wave has the optimum amplitude and the
optimum phase specified by b = −p/4.

We have seen above that the generated wave may also have another component
with f (0) imaginary. Equation (3.8) shows that this subtracts no power from the
sea. In the most general case, keeping b = −p/4, f (0) can have real and imaginary
components. In this case, only the real component should be included in (4.2)
which becomes

Jc = J− − Jout = 2al�f (0) − a2lI . (4.6)

On the other hand, both components of f (0) contribute to (4.1) which remains
valid. Optimizing as before, in the general case, the CW becomes

CW = l
|�f (0)|2∫p

−p
|f (q)|2 dq

. (4.7)

5. Discussion

Whether the real part of f (0) should appear in the numerator of (4.7) or the
imaginary part, or perhaps some combination of the two, clearly depends on the
definition of f (q) in (3.1) and the chosen value of b which is quite arbitrary.
Allowing for this, (4.7) agrees exactly with the formulae for CW derived by
Farley [7,8].

With our choice of b, only the real part of the total wave generated by the
WEC appears in the numerator of (4.7). This is the component that, averaged
over the whole wavefront, reduces the amplitude of the ongoing original wave and
subtracts power. If the WEC and its components do not move, then no power
can be absorbed but the incoming wave will still be scattered or ‘diffracted’. The
wave generated in this case is often called the ‘diffracted wave’, for which f (0) is
mostly imaginary. It is the motion of the WEC that absorbs energy: it does this
by producing another component of the generated wave, often called the ‘radiated
wave’, for which f (0) has a significant real component and subtracts power from
the ongoing wave. So, on the whole, the radiated and diffracted waves correspond,
respectively, to the real and imaginary components of f (q) as defined here. But
this correlation is not exact because diffraction implies some reduction of the
ongoing wave amplitude: for pure diffraction, f (0) must have a real component,
usually small, but large in the case of the Salter Duck to be discussed below.

Thus, one can split the generated wave into diffracted and radiated
components, but the distinction between the real and imaginary parts of the
generated amplitude is more fundamental. The sea is unaware of our distinction
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between diffracted and radiated waves; however, it is sensitive to the phase
of the total generated wave. Therefore, the phase of f (0) is all important. Only
the real part enters into the numerator of (4.7). Using the real part, we exclude the
‘diffracted’ wave. But the total generated amplitude is in the denominator of (4.7).

Formulae for the CW resembling (4.7) have been derived in other studies
[1–6,9], but the symbols do not always have the same meaning. In some versions of
the formula, the total generated wave is used. Some have |f (0)|2 in the numerator,
while we have |�f (0)|2. If diffraction is small, this difference is minor.

Mei [13, eqn (9.17)] derives a formula virtually identical to our (4.6) with f (q)
corresponding to the total generated wave amplitude, and like us he selects the
real part of f (0). From this, our (4.7) would follow exactly; but Mei does not
appear to take this step, at least in this publication. Rainey [11] also gives a
formula similar to our (4.6) again selecting the real part of f (0).

So according to the present analysis and equation (4.7), the CW is completely
specified by the angular distribution of the combined total of all waves generated
by the system. For a small WEC in the open sea, |�f (0)|2 is required in the
numerator; the backward-travelling waves specified by f (p) cannot interfere
usefully with the incident waves which travel in the forward direction.

For a system of generators which emit isotropically, the best obtainable CW
is l/2p. This result was first published, without proof, by Budal & Falnes [14]
in 1975. But if the generated polar diagram is strongly peaked forwards, as it is
for wave energy machines with forward-travelling oscillations [7,10,12], then the
CW can be much higher. With the formula (4.7) one can calculate the capture
by all sorts of complex systems including arrays of separate machines. One needs
to know only the overall polar function f (q).

6. Salter Duck

The Salter Duck merits special discussion because it is often thought that (4.7)
cannot apply. The Duck is an asymmetrical cam which oscillates in pitch, more or
less flat on the side facing the waves (the back) but round on the forward facing
side (the front). As a result it can absorb energy and match the waves arriving at
the back, but its motion radiates nothing forwards. Therefore, we are told that
f (0) is zero, so (4.7) cannot apply; but this misses the essence of the theory.

Consider an idealized Duck, several wavelengths wide, pitching about an axis
somehow fixed in the sea. If the Duck does not move, then it presents a rigid
barrier to the waves; most of the power incident on its frontage is reflected and
there is a large wave shadow on the forward side. The total power in the sea
is unchanged. This is normally understood by saying that the stationary Duck
generates a ‘diffracted wave’ which is superposed on the original sea wave, so
that the combination satisfies the boundary conditions, zero velocity normal to
the Duck surface. The diffracted wave travelling away from the Duck is the same
on each side. In the forward direction, it has a large real part that cancels the
original wave creating the wave shadow. In the backward direction, there is a
strong reflection.

The wave generated by the Duck motion, the ‘radiated wave’, must be added
linearly. In the ideal case, the backward-radiated wave cancels the backward part
of the diffracted wave, so the total wave generated backwards is zero: there is
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no reflection. The Duck motion radiates nothing forwards, so in this direction,
the diffracted wave continues unchanged: we have seen that it produces the wave
shadow. The total wave generated by the Duck is the sum of the diffracted and the
radiated waves. We see that the total wave generated backwards is zero, whereas
there is a strong real component generated forwards.

In (4.7), f (0) must include the diffracted and the radiated wave and in this
case �f (0) is large so that the equation implies a substantial CW. The wider
the Duck, the narrower the forward polar diagram and the larger the CW; all as
expected. Equation (4.7), correctly understood, applies perfectly to the Duck.

This equation is valid for any reasonably compact WEC or combination of
WECs in the open sea, provided f (q) is the angular distribution of the total
wave generated by the system and its phase and amplitude have been optimized.
In most cases, this is achieved by adjusting the resonant frequency and internal
damping of the system.

7. Wave energy converters on sea walls

Now consider a situation in which the incident wave is strongly reflected by a
sea wall which has WECs mounted upon it [15]. Virtually, no waves continue
in the original forward direction. In this case, forward emission by the WEC is
irrelevant; the component of the external wave carrying power away from the
WEC is in the backward (reflected) direction and it is this part of the sea wave
that the wave generated by the WEC can usefully modify by interference. The
calculation is the same as the above, but relative now to the backward direction,
and the CW will again be given by (4.7) but with f (0) replaced with f (p).

8. Other cases

More complex situations can arise if the situation in the sea is more complicated.
A sea wall with gaps could reflect half the incident wave power and allow half to be
transmitted. If a WEC were located in one of the gaps, then the forward emission
would interfere with the transmitted wave, whereas the backward emission would
interfere with the reflected wave. So, both f (0) and f (p) would be relevant
and equations (4.6) and (4.7) should be modified accordingly. Oscillating water
columns located on the corners of harbour walls are considered by Mei [15]. If the
walls are inclined at 45◦ to the incident wave direction on each side, then reflected
waves would travel away from the WEC at 90◦ and 270◦: in this case, both f (p/2)
and f (3p/2) would become relevant. It appears that while equation (4.7) applies
in many cases, there is no general formula that fits all situations.

9. Summary

The CW of a WEC can be obtained from the energy deficit in the far wave
field. This is related to the polar diagram of the combined waves generated by
the WEC. The same calculation gives the detailed pattern of waves in the lee of
the device.
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Finally, it should be clear that for a system in the open sea, the generated
amplitude in the forward direction enters into the numerator of (4.7) and not
the backward amplitude as has been asserted and is still claimed by some
protagonists. But for WECs mounted on sea walls, it is the wave emitted
backwards that determines the CW. In other cases, emission at other angles may
be relevant.

I pay tribute to my pioneering friend Johannes Falnes and thank him for the discussions that have
stimulated this paper. I also thank Rod Rainey, Chiang Mei, Nick Newman and David Evans for
their many illuminating comments.
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