Towards a shock tube method for the dynamic calibration of pressure sensors

Stephen Downes, Andy Knott and Ian Robinson

National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK

In theory, shock tubes provide a pressure change with a very fast rise time and calculable amplitude. This pressure step could provide the basis for the calibration of pressure transducers used in highly dynamic applications. However, conventional metal shock tubes can be expensive, unwieldy and difficult to modify. We describe the development of a 1.4 MPa (maximum pressure) shock tube made from unplasticized polyvinyl chloride pressure tubing which provides a low-cost, light and easily modifiable basis for establishing a method for determining the dynamic characteristics of pressure sensors.

1. Introduction

Many pressure measurements are made dynamically, as there is the need to measure pressures which are rapidly changing. It is necessary to show that the sensor’s output provides an accurate representation of the pressure throughout the measurements [1–3]. At present, many sensors used in such applications are only calibrated using static methods owing to the difficulty of generating known pressure changes of the required rate and amplitude. An example can be found in combustion engines where the in-cylinder pressure varies periodically from 0.1 to 10 MPa, at frequencies of up to 30 kHz [4–6]. The pressures are measured using electromechanical sensors, which are calibrated statically, and it is not known whether their dynamic characteristics cause their statically determined sensitivity to change as the frequency increases. This can lead to errors in the measured pressures and may also cause problems if a sensor has to be replaced. If sensors are calibrated both statically and dynamically, the reliability and uncertainty of the measurements will be improved.

Dynamic calibration requires a source with known characteristics in both amplitude and frequency. A shock
wave generated in a shock tube has a rise time of the order of 1 ns, and the amplitude of
the pressure step generated upon reflection of the wave from the end face of the tube can be
calculated. This makes it an ideal candidate for a pressure calibration standard if it can be verified
that the magnitude of the pressure step can be determined accurately from ideal gas theory using
readily measured parameters such as shock wave velocity and static temperatures and pressures.
We have investigated the application of a novel shock tube, made from plastic tubing, to the
determination of the frequency response of pressure sensors and have made significant progress
towards extending, into the dynamic regime, pressure measurements which are traceable to the
International System of Units (SI).

As the aim of this investigation is to provide a means of calibrating the dynamic response
of pressure sensors, the theory cannot be validated simply by comparing the measured and the
calculated pressures, as that would assume that the static calibration of the sensor was valid at
high frequency. However, it is assumed that the pressure indicated by the sensors is independent
of the gas species and, at present, it is also assumed that the sensors are linear and that the
uncertainties associated with non-ideal behaviour of the gases are significantly lower than those
associated with the experimental measurements. By comparing the theoretical and measured
values of the pressure steps for different pressures and gas species, it should be possible both
to assess the quality of the measurement system and to determine the dynamic calibration of the
sensor. However, this task is complicated by the non-ideal behaviour of both the shock tube and
the sensor, both of which are investigated here.

Spreadsheets used to generate the plots shown in this paper are provided in the electronic
supplementary material.

2. Shock tube theory

A simple shock tube consists of two straight tubes of the same circular cross section that are
separated by a diaphragm. One tube contains a low-pressure ‘driven’ gas, and the other is filled
with a ‘driver’ gas. Gas is added to the driver side until the diaphragm ruptures allowing the
driver gas to generate a series of compression waves within the driven gas which coalesce to
form a shock wave that propagates into the remaining undisturbed driven gas. The release of
pressure at the diaphragm causes an expansion wave to propagate back into the driver section.
Simultaneously, a contact surface between the driver and driven gases, which moves more slowly
than the shock wave, propagates along the tube behind the shock front. The length of the driven
tube section and the relative velocity between the shock wave and contact surface ultimately
determine the time over which useful measurements can be made.

The pressures, temperatures and densities generated within a uniform diameter, low-pressure,
shock tube can be derived from ideal gas theory. The shock front has a thickness of a few hundred
nanometres [7]; thus, to an observer at rest, the pressure across a shock wave moving at 500 m s\(^{-1}\)
rises from its initial value to its relatively constant post-shock value in a time period of the
order of a nanosecond. The pressure remains constant for a few milliseconds after the shock
wave has passed depending on the tube dimensions, sensor location, gas species used in the
driver and driven sections, and the starting pressures and temperatures. The pressure change can
therefore be considered as a step generating all frequencies above a low frequency limit, which is
proportional to the reciprocal of the time that the pressure remains constant.

Figure 1 shows the stages of operation of a shock tube. Figure 1a shows the condition of
the tube at the point that the diaphragm bursts. The driver section is at a uniform pressure \(p_4\)
and temperature \(T_4\), and the driven section is at a uniform pressure \(p_1\) and temperature \(T_1\). In
figure 1b, the diaphragm has burst, and the shock front is propagating into the driven gas with a
constant pressure \(p_2\) behind the shock. The contact surface between the driven and driver gases
is propagating in the same direction as the shock front but at a lower speed. In figure 1c, the
rarefaction wave has reflected from the end of the driver section and the reflected rarefaction
wave is propagating towards the other end of the tube. In figure 1d, the shock wave has reflected
from the end of the tube, and the pressure in the end section has risen to $p_5$ with an associated temperature $T_5$. The reflected shock wave propagates back into the part of the tube at pressure $p_2$ until it meets the contact surface where it is partially reflected and partially transmitted. At the time of arrival of the shock wave, a sensor in the centre of the end wall of the tube would see a pressure step of amplitude $p_5 - p_1$, and the measured pressure would remain stable at $p_5$ until the arrival of the shock wave reflected from the contact surface.

The magnitude of this step can be determined from ideal gas theory; the analysis can be found in [8–10], and is reproduced below. The pressure $p_2$ is calculated from a knowledge of $p_1$, $\gamma_1$ (the ratio of the specific heat at constant pressure to that at constant volume for the driven gas), and the Mach number $M_S$ of the advancing shock wave:

$$p_2 = p_1 \left(1 + \frac{2\gamma_1}{\gamma_1 + 1} \left(M_S^2 - 1\right)\right).$$

The Mach number of the shock is the ratio of the speed of the shock wave to the speed of sound $a_1$ in the undisturbed driven gas. The speed of the shock wave is calculated from measurements of the times that the shock wave passes two pressure sensors mounted a known distance apart in the wall of the tube. The speed of sound $a_1 = \sqrt{\gamma_1 RT_1/m_1}$, where $T_1$ is the measured initial temperature (in kelvin) of the driven gas, $m_1$ is its molecular weight and $R$ is the gas constant.

The pressure $p_5$ that exists after reflection of the shock from the end wall can be calculated from $p_1$, $p_2$ and $a_1 = (\gamma_1 + 1)/(\gamma_1 - 1)$:

$$p_5 = p_2 \left(\frac{(\alpha_1 + 2)(p_2/p_1) - 1}{(p_2/p_1) + \alpha_1}\right).$$

For a specific driven gas at a known starting pressure, the magnitude of the pressure step $(p_5 - p_1)$ is simply a function of the shock wave Mach number; for air ($\gamma_1 \approx 1.4$) starting at atmospheric pressure ($p_1 \approx 0.1$ MPa) and room temperature, this function is shown figure 2.
Figure 2. Pressure step versus shock wave Mach number. (Online version in colour.)

$M_S$ increases with the pressure ratio across the diaphragm; it can be increased further by increasing the speed of sound in the driver gas, either by heating it or by using a lighter gas, such as helium or hydrogen.

The relationship between the driver pressure $p_4$, the driven pressure $p_1$ and the Mach number $M_S$ is given by

$$
p_4 \frac{p_1}{p_1} = \frac{1}{\alpha_1} \left( \frac{2\gamma_1 M_S^2}{\gamma_1 - 1} - 1 \right) \left( 1 - \frac{1}{\alpha_4} \frac{a_1}{a_4} (M_S^2 - 1) \right)^{-2\gamma_1/(\gamma_4 - 1)},
$$

where $\gamma_4$ is the ratio of specific heats for the driver gas, $\alpha_4 = (\gamma_4 + 1)/((\gamma_4 - 1)$ and $a_4$ is the speed of sound in the undisturbed driver gas. Figure 3 shows the pressure step $(p_5 - p_1)$ for air, helium and argon as a function of the pressure $p_1$ in the driven section for a constant pressure $p_4 = 1.4$ MPa of nitrogen in the driver section.

The temperature $T_5$ of the gas after the reflection of the shock wave can be calculated from the following equations:

$$
\frac{T_2}{T_1} = \frac{p_2}{p_1} \left( \frac{\alpha_1 + (p_2/p_1)}{1 + \alpha_1 (p_2/p_1)} \right)
$$

and

$$
\frac{T_5}{T_2} = \frac{p_5}{p_2} \left( \frac{\alpha_1 + (p_5/p_2)}{1 + \alpha_1 (p_5/p_2)} \right).
$$

The assumption that the gases behave ideally will not hold if the molecular energies produced by the generation and reflection of the shock wave are not significantly lower than the dissociation and ionization energies of the gases used (typically greater than 5 eV). Figure 4 shows the temperature of the driven gas after the reflection of the shock wave from the end of the tube. The results are calculated for a pressure of 1.4 MPa in the driver section. The thermal energy associated with this temperature is $kT/e$ eV, where $k$ is the Boltzmann constant and $e$ is the elementary charge. Argon at 0.02 MPa reaches a temperature of 1300 K with an equivalent energy of 0.11 eV. Typical operation of the tube with air at 0.1 MPa reaches a temperature of 600 K with an equivalent energy of 0.05 eV. These energies are orders of magnitude below the dissociation and ionization energies of the gases used, and the temperatures reached in this shock tube are therefore insufficient to cause significant deviations from ideal gas behaviour.
Figure 3. Generated pressure step versus initial driven pressure. (Online version in colour.)

Figure 4. Post-reflection temperature versus initial driven section pressure. (Online version in colour.)

3. Construction of the shock tube

Conventional shock tubes are made from metal tubing and are costly, heavy and relatively difficult to modify. The shock tube described below (and shown in figure 5) differs from
conventional designs in that it is made from plastic tubing. This makes it of low cost to manufacture, it is light enough so that the longest (6 m) section can be readily manoeuvred by one person, and it can be constructed and modified using readily available tools. The shock tube is manufactured from 76 mm inner diameter unplasticized polyvinyl chloride tube with a 6.5 mm thickness wall which the manufacturers claim is suitable for use with gases with a maximum static working pressure of 1.5 MPa. The completed tube sections were limited to a working pressure of 1.4 MPa and were tested at a pressure of approximately 50% higher than this for a few minutes to ensure that they were safe for routine use at the working pressure. The pipe is cut to the required length and commercial plastic pipe flange adaptors, turned down to an outer diameter of just less than 123 mm, are glued to each end of the pipe and equipped with steel flanges. The flanges allow the pipe sections to be connected using four M16 steel bolts. Steel rings 6 mm thick with o-ring slots on both faces (shown in figure 6) are used to provide reliable seals between the faces of the flange adaptors and other parts of the shock tube. Driven sections of 2, 4 and 6 m in length have been constructed along with a 0.7 m driver section. The length of the driver section was chosen to limit the pressure–volume product to 4.5 kJ for a gas pressure of 1.4 MPa which is less than the 5 kJ statutory limit for this type of equipment. Most of the remaining parts—the pressurization flanges, the buffer section and the sensor holder—were turned from acetal rod.

4. Generating the shock wave

The rupture of a metal diaphragm caused by gas pressure provides a simple method for producing a shock wave. However, for a given thickness of diaphragm, the burst pressure will be fairly consistent and, unless a large range of thicknesses of material is available, this will limit the shock pressures that can be investigated. To provide a selectable pressure in the driver gas, an alternative technique uses two diaphragms separated by a small distance (25–30 mm). This creates a third chamber in the shock tube: the ‘buffer’. If, during pressurization, the pressure in the buffer is maintained at half the pressure in the driver section, then it is possible to raise the pressure in the driver section to any pressure between one and two times the bursting pressure of the diaphragms. If the gas in the buffer is then vented, then both diaphragms will burst in a rapid sequence, producing the required shock wave driven by the chosen pressure in the driver section.
The tube described can be used in either single or double diaphragm mode. In single diaphragm mode, the diaphragm is clamped between the plastic flanges terminating the tubes of the driver and driven sections. Intermediate steel ring and o-ring components (figure 6) ensure a good seal and prevent distortions of the diaphragm material which can produce leaks. The most effective diaphragm material for the generated driver pressures has been brass shim of either 0.1 or 0.05 mm thickness. The shim is supplied in rolls and is cut to fit the steel rings. The 0.1 mm sheet repeatedly bursts at a gauge pressure (i.e. a pressure above atmospheric) of approximately 1.35 MPa, whereas the 0.05 mm sheet bursts at about 0.84 MPa.

In the double diaphragm arrangement, the two diaphragms are situated either side of a small buffer section that consists of a 29 mm thick acetal ring which can be pressurized independently of the driver and is pressurized as described above. To initiate diaphragm rupture, a local solenoid valve is operated to vent the buffer to atmosphere. While this method provides the advantage of a selectable burst pressure, it has the disadvantage of using twice as much diaphragm material for each operation of the tube and is more complex to set up as both diaphragms and the buffer ring have to be carefully positioned before the tube sections are clamped together.

The single diaphragm method has been used for most of the investigations in this study as it is simple, reliable and the two burst pressures, which can be obtained with commercially available shim thicknesses, are usually sufficient.

5. Control system

The driver section is pressurized using bottled gas, initially nitrogen, but helium and argon can also be used. The control system for the tube is fully automated using computer-controlled solenoid valves and temperature and pressure sensors.

The system is controlled by a program written in Python on a laptop computer running LINUX. An Agilent 34970A data acquisition/switch unit, connected to the computer via a serial link, is used to interface to the shock tube. A digital interface on the switch unit connects to a custom-built driver for the eight mains-operated solenoid valves needed to control the tube; the multiplexed voltmeter in the switch unit is used to measure both the voltages from the low-frequency pressure transducers and the resistance of the platinum resistance thermometers.

Two gas manifolds are used: a high-pressure manifold supplying the driver and buffer sections of the tube and a low-pressure manifold supplying the driven section. A pressure transducer on the high-pressure manifold enables the computer to determine if there is sufficient pressure in the manifold to operate the tube.

Three gas handling channels are provided which control the driver section, the buffer section and the driven section. Each channel has a solenoid valve that vents the associated section to atmosphere and a pressure relief valve to ensure that the parts of tube cannot be pressurized beyond their maximum working pressure. Each channel also has a solenoid valve and manual...
flow control valve which allow each section to be filled from its associated manifold at a controllable rate. The rate is set to allow time for pressure measurements to be made and acted upon by the computer to ensure accurate control of the pressure in each section of the tube. The pressure transducer for the driver section is mounted close to the pressurization port on the end flange of the driver to minimize measurement errors caused by flow-induced pressure drops in the supply tubing. In addition, to increase the speed of venting of the buffer section, the solenoid valve which vents it is mounted directly next to it. The driven section is provided with two extra solenoid valves: one isolates the driven section from the gas handling system to avoid the chance of damage to the pressure transducer caused by the rapid, possibly over-range, pressure changes which accompany the firing of the tube. The other connects a vacuum pump to the driven section to allow gas to be removed, so that the section can be either used at different pressures or filled with pure gas for measurements involving gases other than air.

The temperature of the gas in the driven section is inferred from measurements of the resistance of general purpose Pt100 platinum resistance thermometers which are placed in good contact with the walls of the tube. The gas is left for a few minutes to come to thermal equilibrium with the walls before a firing and the temperatures near the two ends of the tube are measured; the thermometers are then removed from their wells to avoid their being destroyed by the accelerations of the tube which accompany a firing.

6. Shock pressure measurements

Two pressure sensors in the side wall of the driven section are used to derive the velocity, and thereby the Mach number, of the shock wave by measuring the time delay between shock detections, as demonstrated by figure 7 (derived from a different shock tube set-up). The sensors are at right angles to the shock front and so, although the shock wave has a rise time of the order of 1 ns, the rise time of the pressure recorded by the sensor is proportional to the diameter of the sensor diaphragm divided by the shock velocity. For the conditions in this shock tube, this time is of the order of 10 µs. The velocity can then be calculated from the known 400 mm separation between the sensors and the measured time interval between the two detections, with an uncertainty of approximately 1%. This uncertainty is largely derived from our present knowledge of the equality of the rise time of the sensors and charge amplifiers in response to the shock wave passing over the sensor diaphragm. In future, with further investigations, this uncertainty can be reduced considerably. The sensor having its dynamic response characterized is mounted centrally on the end wall of the driven section with its surface flush with the wall. Four identical piezoelectric sensors (Kistler model 603B) were used in this study; they have a 20 MPa input range with a natural frequency specified to be approximately 300 kHz. The output of each piezoelectric sensor was connected to a charge amplifier (Kistler 5015A) having a 200 kHz low pass filter on its voltage output. The outputs of the charge amplifiers are sampled synchronously using a flexible resolution digitizer (National Instruments PXI-5922) having a resolution greater than 20 bits and a sampling rate of 2 MHz. Data are taken for a time of 200 ms with 10 ms of data acquired before the trigger event. The sampler is triggered on the rising edge of the output of the pressure transducer in the end wall of the shock tube.

7. Validating the applicability of the theory to the operation of the shock tube

Ideal gas theory predicts that a perfect step, lasting several milliseconds, should be recorded by the data acquisition system when the shock wave is reflected from the end wall of the tube. However, in practice, many effects will prevent such an ideal event being recorded. For example, it has long been established that the pressure and temperature do not remain perfectly stable behind the reflected shock front [11,12]; but these and other effects must be investigated both directly and indirectly to eliminate/reduce their impact and to provide an estimate of the accuracy
Figure 7. Estimation of the shock wave velocity. As the shock wave propagates down the driven section it first passes sensor 1 and then sensor 2 before reflecting from the end wall and travelling back past these two sensors. (Online version in colour.)

with which the pressure transducer can be calibrated by application of the ideal gas theory. The effects investigated include the following.

The effects of the diaphragm and tube length. The diaphragm does not open instantaneously and this could have an effect on the shock wave shape. The opening times of diaphragms vary considerably even within a single batch of diaphragm material, and the effect is likely to diminish with distance from the diaphragm. It is necessary to investigate the effect of differing diaphragms and the length of the tube on the shape of the pressure step.

The effects of secondary shock waves. These can be generated by the interaction of the main shock wave with imperfections in the tube; either on the inner surface of the tube or in the junction between the tube and the end wall. These secondary shock waves pass over the sensor following the reflection of the main shock and generate transient signals in the sensor output. The effect of these must be eliminated from the measurement.

The effects of accelerations. The firing of the tube and the reflection of shock and rarefaction waves cause accelerations of the tube wall and the sensor mount. Modern pressure sensors used in dynamic applications can be designed to be relatively insensitive to accelerations, but investigations need to be made to characterize the effects of acceleration on the pressure measurements.

The effects of varying the gas species and initial pressure. Changing the species and pressure of the driven gas constitutes a powerful test for the agreement between theory and practice. The theory used to derive figure 2 predicts the pressure step given a measurement of the velocity of the shock wave and the initial static pressure and temperature in the driven section. The results for differing gases/pressures can be compared by assuming that a stable, linear pressure sensor is used to measure the pressure step. The quality of the agreement between results for monatomic and diatomic gases of differing molecular weights provides a good test of both the theory and the practice in the particular environment of this shock tube and leads to a way of calibrating the pressure sensor.
8. Test results

(a) Diaphragm material

The theory of the shock tube assumes that the diaphragm is removed instantaneously at the time the tube is fired. This does not happen in practice, and the diaphragm opens over a period of a few hundred microseconds. However, as the shock wave moves ahead of the contact surface, created by the opening of the diaphragm, it will encounter undisturbed gas and after a short time its shape should be largely independent of how it was formed as long as the diaphragm does open fully in a relatively short time. Tests were carried out to assess the influence of different diaphragm materials and, by implication, differing opening characteristics, on the shape of the generated dynamic pressure signal. Diaphragms of aluminium, brass and copper, of various thicknesses, were burst and the resulting pressure transducer waveforms are shown in figure 8 (to aid comparison, these have been normalized to a value of 1.0 corresponding to the initial peak output after arrival of the shock front).

These results are some of the first to be obtained with the plastic shock tube, and the sensor was mounted at the end of the tube close to the plane of the flange adaptor. In this position, there are many features in the wall of the shock tube which can produce reflected shock waves moving across the tube and this is likely to be the cause of the feature seen in the period from 10.07 to 10.14 ms. The response of the transducer to the shock front in the first 0.06 ms is almost identical in all four cases suggesting that possible variations in the shock front owing to differing diaphragm materials are insignificant when compared with other features seen in the output (possibly owing to ringing in the dynamic response of the transducer).

(b) Modifications to the sensor mount

In an attempt to reduce the magnitude of the pressure signal feature seen after 10.07 ms, a 70 mm diameter, 25 mm deep steel sensor holder was incorporated within a machined 80 mm long acetal
rod which was bolted to an acetal flange. Figure 9 shows the rod and flange with a brass sensor holder. The rod diameter was adjusted to be a close fit within the tube. This moved the point at which the shock wave was reflected into the uniform section of the tube, providing fewer features to generate strong secondary shocks. The acetal rod was machined to leave an approximately 0.5 mm high annular lip around the steel sensor holder which could be removed later to determine the importance of such small features in generating secondary shock waves.

(c) Driven section length/burst pressure/diaphragm configuration

With the location of the sensor mount altered, further tests were carried out with the two different thickness brass diaphragms, with different driven lengths, and with both single and double diaphragm arrangements. The results are shown in figure 10.

It is apparent that the periodic content of the output trace seems relatively unaffected by the various different experimental variations, particularly in the initial 0.06 ms period after arrival of the shock front, suggesting that these variations are of secondary importance. It can also be seen that the feature from 10.07 ms has changed significantly, and repeatably for the four different loading cases, from the previous experimental conditions, and that the pressure continues to vary significantly within the succeeding 0.05 ms period.

(d) Further modifications to the transducer mount

The annular lip left on the acetal rod (figure 9) was machined and then polished flush with the steel sensor holder. Figure 11 compares the results obtained in the two subsequent tests with those from the previous runs using the 0.1 mm brass diaphragm material and a 4 m driven section.

It is clear that this modification has significantly reduced the magnitude of the previously identified characteristic, lending support to the hypothesis that this was the result of pressure variations initiated at the sensor mount–tube interface when the shock front arrived. Any disturbances originating from the area around the tube wall, travelling at the speed of sound in the heated gas behind the reflected shock front (approx. 490 m s\(^{-1}\)) will reach the centre of the transducer diaphragm after an interval of approximately 0.08 ms which is consistent with the results obtained.
The pre-modification traces also show disturbances to an underlying flat response at about 0.24 ms after arrival of the shock front—this could be explained by the pressure waves generated at the tube edge ‘bouncing’ across the face of the sensor mount, travelling a distance of three radii before impinging on the transducer’s face for a second time. These effects, although much smaller in magnitude, are still apparent when using the modified mount.

Figure 10. Effects of driven section length, driver section pressure and diaphragm configuration. (Online version in colour.)

Figure 11. Effect of transducer mount modification. (Online version in colour.)
The driven section of the tube is able to have its initial pressure varied, to either above or below atmospheric pressure, to vary the amplitude and speed of the pressure step. A set of three tests were performed with the initial driven section absolute air pressure being set to 0.008, 0.034 and 0.102 MPa, using the 0.05 mm brass diaphragm material (figure 12).

The results demonstrate an increase in pressure step magnitude with an increase in initial pressure in the driven section; shock front velocity measurements also agree with theory, showing an increase in velocity with a decrease in driven section pressure (from 554 m s\(^{-1}\) at 0.102 MPa, through 680 m s\(^{-1}\) at 0.034 MPa, to 864 m s\(^{-1}\) at 0.008 MPa). When the normalized output traces are plotted against time (figure 13), the first anomalous portion can be seen to occur at different times (these events are also indicated by the grey circles in figure 12)—this is explained by the increase in the speed of sound in the gas caused by the higher temperatures resulting from the tests with lower pressure in the driven section (figure 4). The second anomalous section also arrives correspondingly earlier in the lower pressure tests (at around 10.17 ms when \(p_1 = 0.008\) MPa and 10.21 ms when \(p_1 = 0.034\) MPa, as opposed to 10.24 ms when \(p_1 = 0.102\) MPa).

As shown in the theory section, the two gas species used within the driver and driven sections affect the magnitude of the generated pressure step. Two pairs of tests were carried out with the 0.1 mm brass diaphragm material using first helium and then argon (both nominally at atmospheric pressure) within the driven section, and the resulting measurements compared with the traces obtained with air in the driven section, for both thickness diaphragms. For each trace, given in figure 14, the magnitude of the generated pressure step at the tube end, calculated from the ideal gas theory, is given within the key. The waveforms are plotted in terms of voltage rather than pressure to emphasize that voltage is the quantity recorded and that the static sensitivity of the gauge is not necessarily correct on this time scale.

If we assume that the value of the pressure step calculated from theory is correct and remains constant throughout the period of the measurement, then it is possible to calculate the instantaneous sensitivity of the sensor. Figure 15 shows the results re-plotted as the sensitivity of the sensor in units of pC bar\(^{-1}\). This simplifies comparison with the sensor’s static sensitivity of \(-4.759\) pC bar\(^{-1}\), as determined by its manufacturer.
Figure 13. Normalized results showing effect of varying initial driven section pressure. (Online version in colour.)

Figure 14. Variation of driven section gas species. (Online version in colour.)

The agreement between the four dynamic traces (which are derived from the means of each pair of traces given in figure 14), both in terms of absolute magnitude and in terms of amplitude and frequency content around the underlying trend, gives confidence that the theory is correctly predicting the behaviour of the gas within the tube. Discrepancies between the traces, such as the early arrival of the anomalous portion within the helium trace, can be explained by factors such as the much faster speed of sound in the lighter gas. The agreement with the sensor’s static sensitivity gives further confidence that the pressure step is being calculated correctly.
Comparison of the results in figure 15 assumes that the sensor has a linear response; in subsequent work, the linearity condition can be relaxed by generating pressure steps which are calculated to be identical in different gas species. As long as the sensor response is not affected by gas species, the linearity of the sensor does not affect the result and allows uncertainties owing to the operation of the shock tube to be assessed at a number of pressures. The results can then be used to assess the linearity of the sensor.

The possibility that a significant proportion of the dynamic content of the waveforms might be due to the mechanical vibration of parts of the shock tube apparatus, rather than the transducer itself, was investigated and the results are described in the next section.

(g) Sensor mount block material

Although the sensor is designed to be insensitive to acceleration, the magnitudes of the accelerations generated by the shock wave in the sensor mounting block are very high. In order to determine how much of the frequency content of the transducer output might be due to acceleration, as opposed to its inherent dynamic response to a pressure step, sensor mounting blocks of different material, but identical geometry, were manufactured to enable accelerations of different amplitude and frequency to be applied to the sensor. Figure 16 gives typical responses from steel, aluminium and brass mounts.

Although the underlying characteristics obtained from the three mounts are broadly similar, there are significant differences in the amplitudes of the variation about this underlying trend. The increased amplitudes of the dynamic components recorded during the aluminium and brass sensor mount tests, when compared with the steel mount, suggest that vibration of these components may be a significant factor in the sensor output. The elastic modulus of aluminium is approximately three times lower than that of steel, and that of brass a factor of approximately two times lower, suggesting that the resulting dynamic elastic strains within sensor mounts of these materials may be significantly higher than those in a steel sensor mount when subjected to the same step force input.
In order to compare the frequency content of the outputs obtained using the three different block materials, a basic Fourier transform of the time-series data was performed, and the results are shown in figure 17.

These plots further demonstrate that the output of the pressure transducer, in response to a step change in input, is strongly influenced by the material of the mount in which it is supported, with frequency peaks (shown circled in grey) coinciding with the primary mode of longitudinal vibration for each mount [13]—the lower amplitude of the peak for the brass mount is likely to be
due to the sensor’s inbuilt acceleration compensation being more effective at lower frequencies. Vibration of the mount will produce acceleration-induced charges within the sensor, generating spurious signals. Methods to reduce or separate these signals from the underlying pressure response need to be investigated and developed.

9. Conclusion

We have developed a novel plastic shock tube and have investigated the effect of diaphragm material, thickness and configuration, and driven section length, on its operation and none were found to affect the measured pressure trace significantly. Driven section pressure and gas species were varied and the effects of these variations were found to be consistent with ideal gas theory as applied to a shock tube. The results of the tests performed within the 1.4 MPa shock tube therefore demonstrate that it has the capability to act as a primary dynamic pressure standard, generating extremely rapid pressure steps of calculable magnitude, to characterize the dynamic performance of pressure sensors. As pressure sensors may also be sensitive to acceleration, further work is required to eliminate any effect of acceleration of the sensor mounting block on the calibration result. It should be noted that the method of mounting the sensor in practical applications will be critical to its dynamic performance.

Funding statement. This work is supported by the National Measurement Office, an executive agency of the Department for Business, Innovation and Skills, under its Engineering and Flow Metrology Programme, and has also received support from the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within the European Association of National Metrology Institutes (EURAMET) and the European Union.

References