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This paper is a complement to the two short papers
published in 2001 and 2013 in which we presented
the results of the two BIPM determinations of the
Newtonian constant of gravitation G. While this
review contains no new results, it includes more
detailed descriptions of certain key parameters that
enter into the determination of G. Following a
description of the overall method and the two versions
of the experiment, we discuss the properties of the
torsion strip, including the effects of anelasticity, then
the electrostatic torque transducer, the source and test
masses, dimensional metrology, angle measurement,
the calculation and measurement of the moment of
inertia, calculation of the torque, possible magnetic
interactions and finally we discuss uncertainties and
correlations in the derivation of a value for G.

1. Preamble
This review of the BIPM work on G [1,2] was undertaken
in the light of the discussions that took place at the
Royal Society meeting on G of which this issue of the
Philosophical Transactions is the proceedings. In preparing
this review, we recalculated the principal contributing
parameters to our value of G published in 2013 [2] and
in so doing, we arrived at different values for two small
corrections and discovered one error. The net effect is to
increase our value of G published in 2013 by 13 ppm and
reduce its uncertainty from 27 to 25 ppm (see [2]).

(a) Introduction
The 1986 CODATA set of recommended values of the
fundamental physical constants [3] included a value of

2014 The Author(s) Published by the Royal Society. All rights reserved.
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G with an estimated uncertainty of 1.3 parts in 104. This was a value largely based on the
experiments of Luther & Towler [4] carried out in the 1970s jointly by NBS (now NIST)
and the University of Virginia, published in 1982. At the time, it was well recognized that
an accurate determination of G was a formidable experimental challenge, principally because
the gravitational attraction between laboratory-sized masses is so small, and gravitational
experiments cannot be shielded from outside gravitational perturbations. Attempts to measure G
using much larger masses such as mountains, or lakes whose level can be varied, fail to produce
accurate values of G, because, although the gravitational signal can be much larger than that from
a laboratory experiment, the uncertainties in the gravitational coupling have always been too
large. Nevertheless, there was every expectation that a value for G with an uncertainty of a part
in 105 would likely soon be obtained.

However, confidence in the CODATA value was undermined, perhaps with hindsight
incorrectly, by the publication of the result of Michaelis et al. [5] in 1996 which was obtained
at Physikalisch-Technische Bundesanstalt (PTB; Braunschweig, Germany) using a novel method
based on an electrostatic servo-controlled torsion balance floating in a mercury bath. Its estimated
uncertainty was indeed a few parts in 105, but its value was some 0.7% higher than the CODATA
value. Despite careful examination of the PTB work at the time, no source of error could be
identified that would put this new value in question. In response, a number of groups around
the world embarked on G experiments, including at the BIPM. Most of these are described in
papers presented at the Royal Society meeting on 27 and 28 February 2014 and contained in this
issue of Philosophical Transactions A. Despite all this work, although it is now clear that the PTB
result was subjected to a serious error almost certainly in the electrostatic servo (see §3), there is
still no consensus at the level of a part in 104 as to the value of G.

From the time of Henry Cavendish, the torsion balance using a wire suspension has been the
principal device used to measure the gravitational attraction between laboratory-sized masses. It
has long been considered that the principal advantage of the torsion balance over other methods
is that the forces to be measured are orthogonal to those resulting from the gravitational attraction
of the Earth. It was pointed out in 1895 by Boys [6] that, because the stiffness of a torsion
wire increases as the fourth power of its radius, but the load capacity increases only as the
square of the radius, the most advantageous configuration for high sensitivity is a very fine
wire carrying a necessarily small mass. Almost all measurements of the Newtonian constant
of gravitation made since then have used a torsion balance with the common design features
that the fibre was a fine circular wire and the test masses were, again therefore necessarily,
small. Minimizing fibre stiffness was an essential requirement before the days of optoelectronic
or electronic position sensing.1 Most of the test masses were spheres at the ends of a rod,
i.e. predominantly a quadrupole mass distribution, with a total mass of the test mass assembly
of a few grams. The small size of the test masses remains the case even in most modern
torsion balance experiments in which the shape of the test mass is sometimes quite different.
With such small test mass assemblies, the gravitational torque is very small, often of the order
of 10−11 N m, and it is consequently very difficult to eliminate the effects of non-gravitational
perturbing forces.

At the BIPM in the 1980s and 1990s, studies were carried out on the anelastic properties of
Cu–1.8% Be flexure suspensions with the view to using them in high precision beam balances
[7–9]. With the knowledge gained of the mechanical properties of Cu–Be flexures, the challenge
presented by the PTB result for G led us to think of a torsion balance in which the test mass
assembly would be suspended from a Cu–Be torsion strip [10–12]. The obvious advantage we
saw at the time of the torsion strip over a torsion wire, was that the elastic torsional stiffness
of a strip depends mostly on the third power of its thickness while the maximum load that
can be suspended depends on the strip’s cross section which, for a given thickness, can be
made arbitrarily large by increasing its width (as long as the width remains much smaller

1Minimizing the elastic stiffness of a wire torsion fibre is still important in order to reduce anelasticity and ultimately the
thermal noise it produces.
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than the strip length). In fact, we found that for wide strips under heavy load there exists an
additional gravitational restoring torque that can be much larger than the elastic component. The
gravitational part of the restoring torque, being lossless, opened the possibility of designing a
torsion balance having large test masses suspended from a wide torsion strip thus increasing
the gravitational signal by many orders of magnitude and having a torsion balance with much
higher quality factor, Q, than a fibre of the same cross section. The torsion strip design with a
high-resolution sensor of angular motion therefore circumvents Boys’ argument.

At the same time, we conceived the idea of using the same apparatus for three, nearly
independent, methods at the same time. In every other determination of G, each experimenter
has reported the result from only one method of measurement. Different experimenters have
used different methods, but this is not equivalent, because the errors in one experiment are not
directly constrained by the results of different methods in other experiments. In an experiment in
which there are two or more independent methods underway concurrently, one has first to look
for errors in each until they all agree. When this is the case, the only errors that can remain are
those in the much more limited set common to all. We discuss this further in respect of our own
experiment in §13. We have used two of the methods with potential for the third, and we have
done the whole experiment twice with many differences in apparatus as explained below.

We begin with a description of the overall design of the BIPM G apparatus and then look in
more detail at some aspects of the experiment.

(b) The overall design and operation of the BIPM G apparatus
The BIPM torsion balance (figures 1 and 2) has the following principal features which are common
to the two versions labelled Mk I and Mk II with which the two results of 2001 [1] and 2013 [2]
were obtained:

— a four-mass configuration to give a much reduced sensitivity to external gravitational
fields, with the torque due to an external mass located far away (with respect to
a characteristic length of the four-mass configuration) falling off as the fifth power
of the distance compared with the third power of the distance for a dumbbell two-
mass configuration. The symmetry of the suspended mass distribution also minimizes
spurious torques and torsional stiffnesses owing to the coupling of simple pendulum
motion, induced by ground vibration, to the torsion mode of the balance [13];

— a torsion strip to give much improved stability with practically no dependence on the
material properties of the strip and the ability to suspend a much larger mass than is
usual in a torsion balance while maintaining a high Q;

— a gravitational torque of about 3 × 10−8 N m, some three orders of magnitude larger than
in most previous comparable measurements which improves the ratio of gravitational
signal to non-gravitational and non-seismic noise and allows precise measurements to be
made in a relatively short time;

— three possible modes of operation, (i) electrostatic servo control, (ii) Cavendish method,
(or free deflection) method, and (iii) change in period of free oscillation, although no
result was obtained with the last method as it was not possible to obtain sufficient stability
of period owing to temperature variations in the laboratory (further discussed in §2);

— dimensional metrology that is quick and accurate by having the whole assembly mounted
on the base of coordinate measuring machines (CMMs), with different models in the two
experiments; and

— angle measurement by means of high precision autocollimators, in Mk I with a ×6
multiplying reflecting optics and in Mk II with a single direct mirror reflection (this is
discussed further at the end of §6).

Figures 1 and 2 show the two versions of the BIPM G apparatus. The overall design is the same,
but certain details differ resulting from the experience gained during the Mk I experiment.
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Figure 1. The Mk I apparatus: (A) one of the four source masses (≈11 kg); (B) one of the four test masses (≈1.2 kg); (C) the
torsion disc about 30 cm in diameter; (D) the central tower holding mirrors, down the centre of which is suspended the
torsion strip, just visible; (F) one of the three mirror supports part of the×6 multiplying optics; (G) the autocollimator; and
(H) the carousel.

A

B

C D

Figure 2. The Mk II apparatus, similar in principle to the Mk I: (A) one of the four source masses, used in the Mk I except
that their height had been reduced by 3 mm; (B) one of the test masses, newly manufactured but similar in size to the Mk
I test masses; (C) the gimbal from which is suspended the torsion strip; and (D) the autocollimator, a different model from
the Mk I.
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The torsion balance suspension is a Cu–1.8% Be ribbon from which hangs a torsion disc of
aluminium alloy in which holes with a range of diameters were machined to reduce its mass.
The holes are symmetrically placed in order to eliminate their coupling to the source masses. The
detailed design differed in the two experiments. Symmetrically placed around the periphery of
the disc are the four test masses of Cu–0.7% Te free-machining alloy each with a mass of about
1.2 kg. The total mass of the suspended torsion balance in both experiments was about 6.6 kg with
a period of about 120 s and a typical Q, in the vacuum achieved, of between 1 and 3 × 105. As we
shall see, 97% of the restoring torque of the loaded torsion strip is gravitational, which is lossless,
and only 3% of the total stiffness is due to the elasticity of the strip. This essentially eliminates the
problem of frequency-dependent stiffness owing to anelasticity and provides a suspension with
extraordinary stability and low drift. In the Mk I version, the strip was suspended directly from
the top plate of the apparatus. In the Mk II version, it was suspended via a cross-knife gimbal to
protect it from the effects of ground tilt and to allow the simple pendulum mode of oscillation to
be damped (this is further discussed at the end of this section). An electrostatic torque actuator
was designed such that the capacitance between rod electrodes and the test masses versus angle
was linear with dC/dθ a maximum. Given that this implies that d2C/dθ2 is nominally zero,
potentials of the order of hundreds of volts could be applied between the electrodes and the
balance without instabilities. The same design was used in both experiments.

In the Mk II version, a central pillar with four mirrors, for gravitational and inertial symmetry,
is attached to the torsion balance to allow an external autocollimator to observe the position of
the torsion disc by direct reflection from one of the mirrors.

Just outside the aluminium alloy vacuum chamber, which houses all of this, is a circular
carousel upon which are placed four source masses, of the same material as the test masses, each
having a mass of about 11 kg. The carousel is constructed from aluminium alloy, rests on three ball
races and is held in place by three others on its periphery. It can be turned via a belt driven by a
stepper motor to place the set of four masses in different positions with respect to the test masses
on the torsion balance. When aligned radially with the test masses, the source masses produce no
torque on the balance. When turned in either direction by about 18.9◦, the gravitational torque is
at its maximum, about 1.7 × 10−8 N m. The source masses in the Mk II experiment were the same
as those used in the Mk I except that 3 mm had been removed from one end in order to re-cut
the V-grooves required for the kinematic mounting of the masses on the carousel (see §4). Each
source mass could be turned to sit in any one of three positions 120◦ apart about a vertical axis. By
making measurements at the three different orientations of the source masses, calculations of the
effects of the measured density inhomogeneities were checked. The test masses, newly made for
the Mk II apparatus, rested on the torsion disc in 5 mm deep circular holes cut into the disc and
machined to be a close fit to the masses. They were firmly held by a spot of cyanolyte (‘super’)
glue. The orientations of the test masses were not varied as the effects of the measured density
inhomogeneities in these smaller masses were considered negligible.

In the servo method, the gravitational torque is balanced by an electrostatic torque applied to
the test masses, so that the torsion balance does not rotate. The torque can then be determined
in terms of the changes of the cross-capacitances with angle and the voltages applied to the
torque actuator

τs = 1
2

∑
i,j

dCij

dθ
(Vi − Vj)

2. (1.1)

In our apparatus, there are three cross-capacitances, namely between the two electrodes and
between each electrode and the rest of the apparatus. The quantities dCij/dθ are found by
measuring each capacitance as a function of angle. Then, we find G = τs/Γ , where Γ is the
gravitational coupling between the torsion balance and source masses. By holding the balance
at a fixed angular position during the torque measurements, anelastic effects in the suspension
are eliminated, although in the case of the Cavendish method anelastic effects are not significant
in our apparatus, as discussed in §2. Figure 3 illustrates the sequence of operations during the
servo and Cavendish runs to obtain one data point.
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sequence of operations for a servo run, total measurement time for one data point ª 23 h

sequence of operations for a Cavendish run, total measurement time for one data point ª 22 h

eleven 30 min periods
30 min

30 min

+18.89°

+18.898° dC/dq:  capacitance meter connected

dC/dq

2 ½ h
~7 h

dC/dq dC/dq

servo: VA VB:  AC voltmeters connected

servo: VA VB

AC BC AB AC BC ABAC BC AB

–18.89°

–18.898°

30 min 40 cycles

Figure 3. Timeline of operations during servo and Cavendish data collection.

In the Cavendish method, the torsion balance is allowed to rotate in response to the
gravitational torque of the source masses. The peak-to-peak amplitude, �θc, of the rotation is
very small, some 30 as (arc seconds) or some 150 µrad. At equilibrium, the gravitational torque is
balanced by the stiffness of the suspension. The angular deflection measured by an autocollimator
is related to the torque by Hooke’s law, τc = k�θc, where k is the stiffness of the suspension.
In addition, τc = GΓ , where Γ is nominally the same function of the mass distribution as in
the servo method. We obtain k from measurements of the period of free oscillation T0, with the
source masses in their maximum torque position, and the moment of inertia I of the suspended
system using the relation k = I(2π/T0)2. Common to both methods is the calculation of Γ , the
gravitational interaction between the source masses and the whole torsion balance assembly,
principally the test masses and discussed in §9.

A simple comparison between the two methods can be obtained from the following
approximate expressions for the torques: for the servo method the torque, τs, is given by
equation (1.1) so that G ≡ τs/Γ ; however, for the Cavendish method

τc ≡ I
(

2π
T0

)2
�θc, (1.2)

so that G ≡ I(2π/T0)2�θc/Γ .
Two useful deductions can be made from a comparison of equations (1.1) and (1.2). First,

angle θ appears in the denominator of the servo method and in the numerator of the Cavendish
method, so that a common calibration error in θ can be eliminated in the average of the two.
Second, because the mass of the test masses appears in both I the moment of inertia of the torsion
balance and in the gravitational coupling Γ between the source masses and the torsion balance, it
is eliminated in the Cavendish method. As we shall see, the values of Γ are slightly different for
the servo and Cavendish methods.
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2. The torsion strip
The key novelty in the BIPM torsion balance is the thin heavily loaded torsion strip made from a
dispersion-hardened Cu–1.8% Be alloy. The shape is shown in figure 4. It is of thickness t = 30 µm,
width b = 2.5 mm and length L = 160 mm. At each end, the strip widens to 20 mm over a length of
30 mm in order to provide the large surface which is clamped tightly to the gimbal support (Mk
II) at the top and to the torsion disc at the bottom, as shown in figure 4. In this way, clamping
occurs where there is no strain thus avoiding stick–slip losses that otherwise would lower the Q
[8]. The strips were made by electrochemical machining from a rolled sheet of the un-annealed
alloy in its solid solution state. Each strip could be detached from the sheet by breaking a few fine
attachments located around the wide portions at the ends. It was then annealed at 330◦C, while
pressed between glass plates, for about 2 h. This has the effect of precipitating the beryllium into a
fine dispersion throughout the material which acts as the blocking mechanism for the movement
of dislocations and hence transforms it into a hard, spring material. On loading with the 6.6 kg
torsion balance, the strip is operating at about 70% of its yield stress and extends by about 1 mm.
Under these conditions, the suspended torsion balance is almost completely unaffected by small
tilts of the top suspension. This is because, in the presence of a tilt about an axis orthogonal to
the wide dimension of the strip, the small raising and lowering of opposite edges of the strip at
the top are completely absorbed by the much larger extension owing to the loading stress. Tilts
about an orthogonal axis to this would not be expected to produce a torque due the low stiffness
of the strip to bending about this axis. We, nevertheless, included the gimbal in the Mk II version
as an additional modification to the Mk I version. We did this for the following reasons. First,
we had demonstrated a coupling of suspension tilt to balance rotation in an earlier version of
the experiment [10] at the level of 0.4% of the rotational stiffness. This would require a tilt of
amplitude of 0.4 µrad, correlated with the source mass motion, in order to produce a rotation of
10 ppm of that due to the gravitational torque. There was, however, no evidence for this actually
quite large tilt being present in the Mk I experiment. Second, we believed that the random torque
noise in the Mk I experiment was in part due to the large Q of the simple pendulum mode of the
torsion balance. We therefore decided to use a damper in the Mk II experiment and our favoured
design of damper was based on a gimbal suspension.

The restoring torque [11], k, of the loaded torsion strip with b � 3t has an elastic component

ke = bt3F
3L

, (2.1a)

and a gravitational component

kg = Mpgb2

12L
, (2.1b)

with

k = bt3F
3L

+ Mpgb2

12L
, (2.1c)

where F is the shear modulus of Cu–1.8% Be; Mp is the total mass supported by the strip; and g is
the local value of the Earth’s acceleration due to gravity.

The elastic stiffness of our torsion strip has an approximate value of 7.5 × 10−6 N m rad−1 and
the gravitational component a value of approximately 2.18 × 10−4 N m rad−1 for a load of 6.6 kg,
assuming a value for the shear modulus of 53 MPa. This compares with the measured value of
the restoring torque of 2.06 × 10−4 N m rad−1 assuming a resonant oscillation period of 121 s and
the measured/calculated moment of inertia of 0.076233 kg m2.

Following extensive studies of the anelastic properties of this Cu–Be alloy for the purposes
of flexure suspensions for balances [12], we can write the frequency dependence of the
shear modulus

F(ω) =
(

F0 + δF
ln(τ∞/τ0)

[
1
2

ln

(
1 + ω2τ 2∞
1 + ω2τ 2

0

)
+ i

(
tan−1(ωτ∞) − tan−1(ωτ0)

)])
, (2.2)
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Figure 4. The torsion strip and its mounting. On the RHS, two strips can be seen not yet taken from the sheet of 30µm thick
Cu–1.8%Be and on the LHS a strip showing how it is held at its wide ends to avoid strain when it is clamped (see text for further
explanation).

where τ0 and τ∞ are, respectively, the shortest and longest time constants characterizing the
loss mechanisms in the flexure and ω is the angular frequency of stress variations in the flexure
produced by the torsional oscillations of the balance. The quantity δF is the relaxation strength
of an individual relaxation mechanism in the spectrum. The equation of motion of the torsion
balance can be written, in the absence of viscous damping, as

Iθ̈ + 2γ Iθ̇ + krθ = N, (2.3a)

where, again, I is the moment of inertia of the torsion balance, γ is a frequency-dependent
damping coefficient, kr is the real part of the restoring torque and N is an applied torque. From
equations (2.1) and (2.2) and noting that δF � F0, we can write

kr = Mgb2

12L
+ bt3

3L

[
F0 + δF

2 ln(τ∞/τ0)
ln

(
1 + ω2τ 2∞
1 + ω2τ 2

0

)]
(2.3b)

and the damping constant becomes

γ = ke
δF/F

2Iω ln(τ∞/τ0)
(tan−1 ωτ∞ − tan−1 ωτ0). (2.3c)

In free oscillation, with N = 0, equation (2.3a) can be solved in the usual way to calculate the
natural angular frequency of oscillation,

ωR = (ω2
0 − γ 2)1/2 (2.4)

with

ω2
0 = kr(ω0)

I
. (2.5)

Given that the gravitational restoring torque is significantly larger than the elastic term and that
the lossy component of the elastic term is suppressed by the modulus defect, we can assume that
ωR =ω0. We use equation (2.3b) to estimate the stiffness at the resonant frequency, kr(ω0), and the
stiffness, kr(ωm), at the angular frequency, ωm, that the gravitational torques are applied to the
balance during the measurements. The difference between these two stiffnesses can be written

kr(ωm) − kr(ω0) = bt3

3L
δF

2 ln(τ∞/τ0)
ln

(
1 + ω2

mτ
2∞

1 + ω2
0τ

2∞

)
, (2.6a)
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where we have assumed that ω0τ0,ωmτ0 � 1 which is consistent with observations [8]. If we
further suppose that ω0τ∞,ωmτ∞ � 1, which implies that we are still in the regime where the
full spectrum of damping processes has not relaxed during the data taking runs, we find

kr(ωm) − kr(ω0) = ke
δF/F

ln(τ∞/τ0)
ln
(

T0

Tm

)
, (2.6b)

with T0 = 2π/ω0 = 121 s and Tm = 2π/ωm = 1800 s. In the same frequency regime, we find that the
damping constant given in equation (2.3c) can be written

γ = 1
2Iω

ke�, (2.6c)

where �= (δF/F)(π/2 ln(τ∞/τ0)). The quantity � for Cu–1.8% Be at the appropriate stress has
been measured to be 1.0(2) × 10−4 [8,14]. The fractional bias in the value of G owing to anelasticity
can be written

δGan

G
= kr(ωm) − kr(ω0)

ke + kg
= 2
π

ke� ln(T0/Tm)
ke + kg

. (2.7)

This leads to a correction to G when calculated using the stiffness at resonance of −5.9 ppm. The
importance of equation (2.6a) was pointed out by Kuroda [15] and its implications in time of
swing experiments have become known as the ‘Kuroda effect’. Our 2013 value for G included, as
did the 2001 value, a correction for anelasticity of −13 ppm with an uncertainty of 4 ppm. We now
believe that this correction was an overestimation based on our anelasticity data and should be
only −6 ppm with a conservative uncertainty of 6 ppm.

Because the second term in equation (2.1) does not contain the modulus of elasticity, it should
be independent of material properties and thus lossless. We confirmed this in experiments [8]
in which we showed that under heavy load, in which the second gravitational term represented
nearly 99% of the restoring torque, it was possible to make a torsion balance supporting a load
of 10 kg having a period of 18 s with a Q of 1.24 × 106. This was only slightly below the expected
value, the difference being attributable to losses at the ends, which were not optimally designed,
and residual viscous damping in the vacuum that we could achieve. We also note that the
time-dependent relaxation after deflection of a torsion balance, the anelastic after-effect, is also
proportional to � [7,12].

The origin of the second, gravitational term is the fact that as the torsion strip turns the
lower end rises. The potential energy thus gained supplies the restoring torque. For an angular
deflection θ , the potential energy of the suspended mass, Mp, increases by an amount given by

1
2

kgθ
2 = Mpgb2

24L
θ2. (2.8a)

This can be due only to the mass being raised to a height �h above its rest position

Mpg�h = Mpgb2θ2

24L
, (2.8b)

so that

�h = b2

24L
θ2. (2.8c)

For small angular deflections, �h can be very small. In the present G experiment, in which the
deflection of the torsion balance during the Cavendish mode is about 150 µrad, we find �h is
only 10 fm (which is roughly the diameter of the nucleus of a copper atom).

It is interesting to note that Heyl & Chrzanowski [16] attempted to exploit the properties of a
bifilar suspension that provides an apparently similar gravitational restoring torque. In fact, there
is a crucial difference. In a wide torsion strip, the strain is distributed uniformly along the length
of the strip, whereas in a bifilar suspension all of the strain occurs at the points of attachment of
the wires where it is impossible to avoid frictional losses.
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For a wire suspension, the equivalent expression for restoring torque is

kw = πr4

2L

(
F + Mpg

πr2

)
, (2.9)

where Mpg/πr2 is the stress, σ , in the wire. Because σ is always much smaller than F, the restoring
torque is always dominated by the elastic component, so that a torsion balance suspended on a
wire can never have the high Q of one suspended on a torsion strip.

The ratio of the restoring torque of a strip, k, and a wire kw having the same length, same shear
modulus and ultimate stress, the same test mass load and the same cross section, i.e. πr2 = bt, is
thus given by

k
kw

= ke

kw
+ kg

kw
≈ 2π

3

(
t
b

)
+ π

6
σ

F

(
b
t

)
. (2.10)

For the torsion strip used in the G work, in which b/t = 83, the ratio k/kw is, from the second
term in equation (2.10), about 0.7. Thus, the period of oscillation of the two balances with equal
loads and therefore gravitational signal in a G experiment, will be about the same. However, the
anelastic after-effect and the damping would be larger, from the first term in equation (2.10),
by a factor of about 40 in the wire torsion balance. In addition, there would most likely be
additional damping owing to stick–slip associated with the clamping of the ends of such a stiff
wire. The amplitude spectral density of thermal noise torques, nT, acting on a torsion balance due
to anelastic losses in the suspension gives rise to 1/f noise [12],

nT =
(

4kBT
ke

ωm
�

)1/2
N m Hz−1/2, (2.11)

where ωm is the cadence of the experiment and, for the torsion wire, we can write kw for ke. The
signal-to-noise ratio will be more favourable by the square root of the ratios of the elastic stiffness
or, for our example, by a factor of about 6. We can see that the torsion strip provides a significantly
better performance than the torsion wire in the case where the experimental uncertainty is
dominated by non-gravitational forces, i.e. where the signal to noise is proportional to the test
mass value. The disadvantage of the torsion strip is that its angular displacement compared with
a wire-suspended balance is reduced owing to its increased effective stiffness, and the sensitivity
can be limited by the noise level in the detector of angular displacement.

We can extend Boys’ argument to encompass the torsion strip design in the following way.
Imagine a wire and a strip suspension with their respective detectors of angular displacement
and suppose that the suspensions have the same elastic stiffnesses (ke = kw), then they will have
equal intrinsic anelasticity, defined say by the magnitude of the anelastic after-effect. The ratio of
the gravitational signals in a G experiment, determined by the values of their test masses, will be
proportional to the square root of the aspect ratio of the torsion strip. This follows from the first
term in equation (2.11). In our case, this is again about a factor of 6 in favour of the torsion strip.
In order for the torsion strip and its detector to fully exploit this gain in signal, the detector must
have a noise level that is better by a factor of kg/kw (the second term in equation (2.11)) or about
40 in our case. A further point is that the higher stiffness of the torsion strip broadens its useful
frequency range and gives the possibility of working at a higher ωm with reduced 1/f noise.

We noted in §1 that we were unable to use the time-of-swing method to give a precise value of
G owing to the lack of temperature stability in our laboratory. We can estimate the temperature
coefficient of the restoring torque given the temperature coefficients of the shear modulus and of
the strip dimensions. If we define α as the coefficient of thermal expansion of the strip and the
fractional change in the shear modulus as

η= 1
F

dF
dT

, (2.12)

then the rate of change of the restoring torque of the torsion strip with temperature becomes

1
k

dke

dT
≈ (3α − η)

ke

kg
+ α. (2.13a)
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With η= −4 × 10−4 [14] and α = 17 × 10−6, we find that 1/k.dke/dT ∼ −5 × 10−6 K−1, with the
temperature coefficient of the gravitational component being mostly compensated by that of the
elastic component. We can, for completeness, calculate a similar expression for a wire suspension,

1
kw

dkw

dT
= (3α − η), (2.13b)

which is dominated by the thermal dependence of the elastic modulus. Using equations (2.13a)
and (2.13b), the ratio of the sensitivity of the strip to the wire to temperature variations is
∼ (ke/kg) − (α/η). Noting that the period change is proportional to square root of the ratio of the
moment of inertia to the torsional stiffness, we can calculate the fractional change in the period,
P, as

1
P

dP
P

= αp − 1
2k

dke

dT
, (2.14)

where αp is the thermal expansion coefficient of the torsion disc.
We can estimate the change in the stiffness of the torsion pendulum due to the gravitational

torque of the source masses when they are at their closest to the test masses by differentiating
equation (5.1) below,

kG ≈ 140 GMm
r4

R5 . (2.15)

Using equations (2.13a) and (2.14), we can estimate that the stability of the temperature required to
achieve 10 ppm in G is about 0.5 mK. This level of control is possible in a state-of-the-art laboratory
with a good experimental thermal design; however, we were unable to achieve this over periods
long enough to enable us to obtain data with high enough quality to derive a value for G.

Some data were taken using the time of swing method. The measured change in period was
about 37 ms with a standard deviation of 9 µs, equivalent to a relative uncertainty in G of about
250 ppm. The variation in laboratory temperature while these data were being taken was ±0.15◦C,
from which one can deduce that to reach an uncertainty in G of 10 ppm we would need a stability
of temperature of about 6 mK, which is in reasonable agreement with the calculations above given
that the thermometers were just outside the vacuum can. The absolute value of the period of 120 s
during these data varied with a standard deviation of about 250 µs or 2 ppm which was more
than adequate for the timing in the other configurations.

With a stable enough temperature, the heavily loaded torsion strip could provide an almost
perfect suspension that decouples the torsion balance from almost all extraneous influences
except the gravitational torque of the sources masses.

3. The electrostatic torque transducer
As described in §1b, we balanced the gravitational torque with an electrostatic torque in the servo
method. The torque was obtained directly in SI units from the change in total electrostatic energy,
U, stored in the electrostatic actuator as a function of angle

U = 1
2

VtC V, (3.1)

where C represents the matrix of self and mutual capacitances and V is a vector of potential
differences. In an electrostatically shielded volume, U can be written in terms of measurable cross-
capacitances, Cij [17]

U = 1
2

∑
i,j=1..3

Cij(Vi − Vj)
2. (3.2)

The torque can then be found from the derivative of equation (3.2), giving equation (1.1).
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The idea of the electrostatic torque transducers came from the following observation regarding
the capacitance between two cylinders moving in a plane perpendicular to their axes: if one
cylinder approaches the other along a straight line such that the two cylinders will not touch,
then there is obviously a maximum in capacitance at the point when the cylinders are at their
smallest separation. This implies that the gradient of capacitance with respect to motion along
the line must reach a maximum somewhere on either side of this peak. An analytical expression
for the capacitance per unit length, Ccc, between two infinite cylinders of radius R1 and R2, with
centres separated by distance D can be found in Smythe [18]:

Ccc = 2πε0

cosh−1 u
, (3.3a)

where

u2 = D2 − R2
1 − R2

2
2R1R2

. (3.3b)

This was used to define the position of a cylindrical electrode relative to a test mass cylinder
such that the change in capacitance with angle of motion of the mass was a maximum. In
order to achieve a working control system, we clearly needed two electrodes. A two-dimensional
finite-element program was written to investigate the cross-capacitances between the two puller
electrodes and the test mass, CAC and CBC, and between both electrodes, CAB themselves. The
capacitance gradients, dCAC/dθ , dCBC/dθ , were found to be given to a good approximation
by equations derived from equation (3.3). The electrostatic actuator was designed with two
electrodes of radius 3 mm with a centre-to-centre distance of 9.4 mm and with a nominal
minimum gap between the surfaces of the test masses and the electrodes of 1.5 mm. The nominal
values of the capacitance gradients in the Mk II apparatus dCAC/dθ , dCBC/dθ and dCAB/dθ were
60.88, −61.74 and 0.33 pF rad−1, respectively. This compares with values for dCAC/dθ from the
simple model of 70 pF rad−1, with dCAB/dθ being nominally zero.

The gap between the surfaces of the puller and the test mass in the Mk II experiment was
1.8 mm with the test masses having radii of 27.49 mm. Each set of four puller electrodes was
electrically connected together using coaxial cables external to the vacuum can. The shielded
cables within the vacuum can and the insulated ceramic mounts for the electrodes were confined
to the bottom of the vacuum can where they were shielded by an aluminium plate that closely
fitted around the base of the electrodes. This arrangement was a deliberate improvement on the
Mk I apparatus where copper braid was used to provide a grounded shield around the insulation
of the shielded cables in the vacuum can. All four pairs of puller electrodes were connected to
ends of an aluminium ‘cross’, located underneath the false bottom of the vacuum can, that could
be translated in two directions to centre the electrodes on the torsion balance.

An Andeen–Hagerling 2500A capacitance bridge was used to measure the three cross-
capacitances at 1 kHz using the three-terminal method. It is important to note that this powerful
method enables small capacitances, of order picofarads, between electrodes at the ends of long
coaxial cables to be measured with ppm accuracy in terms of a standard capacitor. This is achieved
by enclosing the electrodes in an electrostatic shield: one electrode is connected to the bridge
drive voltage which has negligible output impedance (bridge ‘hi’) and the other is connected to
bridge ‘lo’ which is at the potential of the bridge ground [19]. In this scheme, any currents that
flow to the electrostatic shields owing to stray capacitances do not influence the bridge balance.
Measurements of CAC, for example, were made with the bridge ‘lo’ terminal attached to the ‘A’ set
of electrodes and the bridge ‘hi’ was connected to the vacuum can, which was in turn electrically
connected to the torsion balance. During this phase, electrodes B were connected to bridge
ground. Capacitances, CBC, were measured in a similar fashion. Capacitance CBC was measured
with the set A puller electrodes connected to bridge ‘hi’ and set B connected to bridge ‘lo’. In this
case, the vacuum can was connected to bridge ground. The standard 10 pF capacitance (model
AH 11A) was calibrated at BIPM. The capacitance gradient was derived from measurements of
capacitance and angle with the torsion balance freely swinging that were made before and after
each data run.
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During the phase of the experiment when the gravitational torques were being balanced by
the electrostatic torques, each set of electrodes was connected via transformers to an Agilent
33120A function generator. The vacuum can, coaxial cable shields and the torsion balance were
connected to ground. The servo signal, which was derived from the angular displacement readout
of the autocollimator, was used to modulate the amplitude of the AC voltages produced by each
generator. The generators were phase locked, and the servo voltage increased the amplitude of
the output of one and reduced the amplitude of the other. We can write

VA = (V0 + v) sin 2π ft, (3.3c)

and
VB = (V0 − v) sin 2π ft, (3.3d)

where V0 was 13 V and f = 1 kHz and the value of v, the drive voltage that balanced the
gravitational torque, was about 10 V. The purpose of this scheme is to ensure that the torque
was approximately linear in terms of the drive voltage v. The true RMS values of the AC voltages
were measured using Fluke 5790A voltmeters that were calibrated at the Laboratoire National de
Métrologie et d’Essais (LNE) leading to a fractional correction of −30 ppm to the value of G (see
§11b). The potential drop across the cables between the meter and the electrodes amounted to less
than 1 ppm of that measured.

The test masses are not expected to be at the same potential as the puller electrodes because of
the contact potentials generated by the different metals comprising the torsion balance. During
the early work using a DC servo system, we established that this contact potential was 24 mV.
When this effect is included, the torque can be written

τs = 1
2

{
dCAC

dθ

〈
(VA − δ)2

〉
+ dCBC

dθ

〈
(VB + δ)2

〉
+ dCAB

dθ

〈
(VA − VB)2

〉}
, (3.4a)

where the angle brackets indicate the time average is taken. Clearly with VA = VB, the cross terms
in the angle brackets average to zero and the only remaining term is

δτs0 = δ2

2

(
dCAC

dθ
+ dCBC

dθ

)
≈ −2 × 10−17 N m. (3.4b)

In addition to this torque being entirely negligible, note that δτs0 is a fixed offset and therefore
cancels in the experimental procedure when the difference between the gravitational torques of
alternate sign is found. Spatial variations in the potential (patch potentials) on the surfaces of
the copper rods and the disc could give rise to further electrostatic forces that would have a
stronger gap dependence than those modelled in the design of the torque actuator and so give
rise to a contribution to the restoring torque. However, if present, this does not enter into the
servo measurements and is accounted for by the measurement of the oscillation period in the
Cavendish method.

Initially, we used a DC servo system but were unable to eliminate the possibility of frequency-
dependent losses that could render the calibration of dCij/dθ at 1 kHz inconsistent with dCij/dθ
at around 1 mHz. Biases in the calibration were such as to increase the apparent value of G in
contradiction to that expected owing to loss mechanisms in surface films on the electrodes [20].
However, it can be shown that a grounded lossy dielectric located in the electric field will add,
in parallel, a frequency-dependent capacitance such that the measurement of dCij/dθ at high
frequency overestimates the calibration constant. We encountered the possibility of such a bias
in our early work by noting that the Q of the torsion balance was halved on application of
2 kV DC to the electrodes. We later identified a coaxial cable whose electrostatic shield was not
grounded and whose insulating cover was exposed thus affecting the fringing field of a pair of
electrodes. We suggested that a similar effect may have been present in the PTB measurement,
because, in their experiment, the calibration and measurement frequencies differed by orders of
magnitude, as was the case in our preliminary work. Such problems are eliminated by using an
AC servo. Supplementary investigations [21] by the PTB team discovered (at the instigation of
one of us, C.C.S.) that a term in the electrostatic energy had not been measured. Although the
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torsion balance itself had been dismantled, PTB was able to measure this extra cross capacitance
and concluded that its inclusion would reduce the final value of G by 0.71%. This must therefore
be considered as the most significant systematic bias in the PTB measurement.

4. The test and source masses
The size and scale of the whole apparatus was set by the initial decision to limit the weight of
the source masses to about 11 kg, the maximum that one of us (T.J.Q.) considered reasonable
to manipulate by hand. The second important decision was to make both source and test
masses in the form of right circular cylinders from Cu–0.7% Te free-machining alloy susceptible
to manufacture in the BIPM workshop and resulting in small magnetic contamination from
machining (see §10). Both test and source masses were made with their heights equal to their
diameters, 55 and 118 mm, respectively, in order to produce radial gravitational fields that were
as large as possible. At the separation between the source and test masses (about 107 mm), the
magnitude of the gravitational field due to the source masses corresponded to about 90% of that
due to a sphere of the same mass. For the Mk II apparatus, new test masses were made, and the
source masses were cut down to 115 mm in height. Calculations of their individual gravitational
fields assuming they were spherical differ by about 10% from a calculation treating them as
cylinders. Although it was not necessary to make the four source masses and the four test masses
of exactly the same size, in fact they were quite close in dimension and in mass. The masses in the
Mk II were about 1.2 and 11.2 kg, respectively, for each of the test and source masses, similar to
Mk I.

A critical parameter in all measurements of G is the uniformity of density of the attracting
masses. Cu–0.7 Te is an alloy that can be cast in molten form into billets which are then swaged
to obtain a material free of voids. However, as we discovered, this hot working of the material
leads to stresses and associated small density gradients. For both source and test masses, we
measured the density inhomogeneities by hydrostatic weighing of samples cut from the original
billet and, for the source masses, by determining their centres of gravity with respect to their
geometrical axis from measurements of their dynamic-equilibrium position and period of free
oscillation when supported on an air bearing. We found that the density varied linearly across
the diameter of the source masses. The density at the centre differed from that at the perimeter
by an amount �ρ0 and this increased from about one to two parts in 104 along the length of
the billet. Such a transverse linear density gradient was not what we expected and results in
a cosφ dependence of density in each source mass, where φ is an angle measured in the plane
perpendicular to the nominal symmetry axis of the cylinders. The inner mass multipole moments,
e.g. q11, were therefore present in the source masses that were not accounted for in the basic
calculation of the gravitational coupling between the source, test masses and torsion balance.
A more detailed analysis (following the method given by D’Urso & Adelberger [22]) shows that
these inner moments interact with outer moments, e.g. Q22, of the test masses. These moments can
in turn be calculated from the inner moments of the test masses using results taken from Trenkel
& Speake [23]. This calculation shows that the torque between the two masses, whose centres are
a distance a apart (approx. 107 mm) has an extra term which is given to first order as

�Γ

Γ
= 5

6
Rs

a
�ρ0

ρ0
cosφ0 cosφ, (4.1)

where Rs is the radius of the source mass, φ is the orientation of the q11 multipole and φ0 is the
angle joining the centres of the source mass and torsion balance which is 21.5◦ for a source mass
offset of 18.9◦. Using the measured density inhomogeneities, this gave the maximum fractional
error of about 90 ppm for one source mass. When the torques, owing to all source and mass
pairs, were summed, this reduced to −32, −0.4 and 36 ppm, depending on the orientation of
the source masses. In the analysis of the results from the Mk II experiment, the effect of the mass
inhomogeneities was calculated numerically (see §9) to be −22, 2 and 25 ppm. Thus, in any case,
the errors of the torques at the three angular positions of the source masses, 120◦ apart, average
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almost to zero as expected. In the Mk II experiment, the source masses were in the configuration
such that the inhomogeneity led to correction of −2 ppm for the Cavendish and −22 ppm for the
servo data that were included in the calculation of the torques. A linear axial variation amounting
to 100 ppm over the length of each source mass was also found by hydrostatic weighing. This
introduced an axial shift in the centres of mass of about 1 µm, which in turn produced a negligible
change in torque. The source masses used in both experiments were the same except that for the
Mk II experiment a 3 mm slice was removed from one end in order to allow new ‘V’ grooves to
be cut. The density inhomogeneity of each mass was then rechecked using the air bearing, the
difference being negligible. In addition, X-ray examination showed the absence of axial voids (the
only inhomogeneity in the source masses that would not have been detected by these and earlier
tests) with diameters greater than 2 mm (1 ppm). Such axial voids in a swaged billet otherwise
free of voids would in any case have been most unlikely.

The far smaller billet from which the test masses were cut showed no azimuthal dependency
within the uncertainty of our measurements. The accuracy of the density measurements was
limited to about 5 ppm but, owing to the shape of the samples used, linear variations of 9 ppm
could not be ruled out. Using equation (4.1) to calculate the analogous torque error for the test
mass inhomogeneity, we find a maximum fractional change in torque for a single mass pair of
about 1.7 ppm. We would expect that, when summed over all pairs, this would be reduced to less
than 1 ppm. This was considered negligible and was not included in the uncertainty budgets.

The variation of density across the radius would shift the centre of gravity of the test masses,
and this would produce an error in the calculation of the moments of inertia. If we have a density
gradient across the diameter of a cylinder with �ρ =�ρ0(r/rt) cosφ, where r and rt are the radial
distance from the axis of symmetry and the radius of the test mass, respectively, the shift in
the centre of mass of the cylinder can be calculated as δr = (�ρ0/ρ)(rt/4). Assuming a random
orientation of the masses, the first-order fractional change in the moment of inertia of the torsion
balance is given by �I/I ≈ δr/(

√
2d), where d is the average radial distance of the centre of the

masses to the axis of rotation. This amounts to a change of much less than 1 ppm in the moment
of inertia which is negligible. This systematic effect, if present, would show up differently in the
Cavendish and servo methods. The experimental measurement of the moment of inertia, albeit
with an uncertainty somewhat larger than 1 ppm, confirmed that there was no significant error in
the calculation of the inertia from this or any other source. The uncertainty in the calculation of
the moment of inertia was based on dimensional metrology as described in §8.

The kinematic mounting of the source masses on the carousel was by means of three ‘V’-
grooves cut in the base of the masses at 120◦ close to the periphery and three cones in the carousel
in which 5 mm diameter phosphor bronze balls were placed. This provided a reproducible
positioning of the 11 kg masses after multiple placing and removals. This is discussed in §5.

5. Dimensional metrology
Dimensional metrology is another key part of any G experiment. Uncertainties owing to errors in
dimensional metrology were calculated using an approximate expression for Γ that was derived
from a multipole expansion assuming all the masses to be points (see §11) [16]

Γ = 35Mm
r4

R5 sin 4θ , (5.1)

where M and m are the nominal source and test mass values, respectively, r and R are the nominal
values of the radial distances of the source and test masses from the torsion strip rotation axis,
respectively. Equation (5.1) gives an approximate value for the amplitude (i.e. half the peak–peak)
torque in terms of the position of the source masses, θ , with θ = 0 corresponding to the source and
test masses at their closest position. This expression agrees with the final computed value within
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about 1%. Overall scaling errors common to both test and source mass positions lead to errors in
G proportional to�l/l, where l is the distance from the balance axis. However, uncorrelated errors
in the measurement of the relative positions of the test masses contribute (in quadrature) as 4�l/l
and for the test masses as 5�l/l and can thus lead to much larger errors in G.

We chose to mount the apparatus on the base of a CMM so as to give the best possible
opportunity of attaining accurate dimensional metrology. Two different CMMs were used, for
the Mk I a DEA Swift and for the Mk II a Brown and Sharpe Mistral. In both cases, the
CMMs incorporated man-made marble base plates onto which the experiment was assembled.
A spherical ruby stylus was attached to a mobile carriage, manufactured almost entirely from
an aluminium alloy for lightness and rigidity, running on air bearings constructed directly in
the marble surface of the table. When not being used for metrology, the carriage was parked
at the farther end of the marble table. In the Mk I experiment, the instrument was calibrated
by the manufacturer on site and subsequently checked by means of end gauges calibrated by
the LNE. In the Mk II experiment, following a change observed in the original calibration of
the manufacturer, the x- and y-scales were recalibrated by us using a laser interferometer. The
uncertainty in the new calibration was established in two steps: first the x- and y-scales of the
CMM were calibrated using the laser interferometer and second by using 300 and 500 mm gauges
placed at various orientations across and on top of the source masses and also, for the 300 mm
gauges, placed alongside the source masses at their mid height. A total of 14 measurements of
the gauges were made. Taking all the measurements together, the average difference between
the gauge lengths (corrected to the temperature of the measurement) and the corrected CMM
readings was +0.38 µm with a standard deviation of 0.9 µm which for n = 14 gives a standard
deviation of the mean of 0.25 µm. From this, we estimated the uncertainty of the calibration of the
CMM to be 0.4 µm, i.e. the common errors that affect both test and source mass positions can be
taken to be about 0.4 µm. This is equivalent to type B uncertainties of 3 ppm in respect of the test
masses and 2 ppm in respect of the source masses.

The type A uncertainties in the source mass coordinates were established by sets of
measurements of the relative source mass positions in position A at +18.898◦ from zero, position
B is at −18.898◦. Each value for x and y of the centre of each source mass came from a set of
eleven points measured around the circumference, each mass being measured seven times. The
average standard deviation of the seven measurements about its average was 0.5 µm, a figure
confirmed by repeats of this procedure. On the basis of these measurements, the six different
distances between the four masses, 1–4; 1–3; 1–2; 2–3; 2–4; and 3–4, were calculated. The average
difference between each of these distances (which were either about 302 or 428 mm) over a period
of about one week was 0.52 µm with a standard deviation of 0.16 µm. The 300 mm gauge block
was also placed at the four possible positions across the source masses 2–3; 2–1; 1–4; and 4–3. The
difference between the gauge block measurements measured at the beginning and at the end of
this week was 0.5 µm with a standard deviation of 0.2 µm. From these data, we estimate the type
A uncertainty in the source mass positions as 0.5 µm, equivalent to an uncertainty in the measured
value of G of 12 ppm. Similar type A uncertainties were obtained for the test mass coordinates to
a type A uncertainty of 17 ppm in the value of G.

The uncertainty in the radii of the source masses (about 120 mm) was established from seven
sets of measurements made at the three orientations, A, B and C, from January to March 2007.
The standard deviation of the seven values of radius about the average for each source mass was
0.6 µm for masses 1 and 3, 0.5 µm for mass 2 and 0.2 µm for mass 4. The standard deviation of
the means becomes 0.2, 0.2 and 0.1 µm, respectively. Dividing the set of seven measurements into
three groups, those at orientation A, B and C, the average radius of the set of four masses in the
three orientations was identical at 58.9876 mm. This result demonstrates both the reproducibility
of the measurements and, more importantly, agreement to within 0.1 µm for all three orientations
of the source masses.

The coordinates of the centres of both the test and source masses were obtained using the
CMM software, which calculates the centre from sets of measurements around the circumference.
This software was checked by an independent calculation, which also allowed the CMM x- and
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y-scale corrections to be included in all subsequent measurements. The long-term reproducibility
of the measurements was consistent with the estimated uncertainties, namely a few tenths
of a micrometre.

At the end of the Mk I work, in 2001, the last measurement was of the relative positions of the
source masses on the carousel. The carousel was then removed to the new laboratory where the
Mk II work was due to begin and placed on the base of the new CMM and the source masses
replaced. A new CMM had been purchased for internal operational reasons related to equipping
the BIPM mechanical workshop with a CMM. Measurements of the relative positions of the
source masses measured by the two CMM were found to agree to about 1 µm. This provided
a good comparison between the dimensional metrology in the two experiments. It also illustrated
our experience over all the years of the two experiments that removing and replacing the source
masses on their kinematic mounts resulted in a reproducibility of relative position of 1 or 2 µm.
It was sometime after this that the calibration of the new CMM was found to have changed,
which led us to the calibration with the laser interferometer. Subsequent measurements against
end gauges showed no further changes.

6. Angle measurement
Angle measurement intervenes in both the servo and Cavendish methods. In the servo method,
it is necessary to calibrate the electrostatic servo by determining dC/dθ for each of the pairs of
electrodes and in the Cavendish method the deflection of the torsion balance must be measured.
Two different autocollimators were used, an Elcomat 2000 for the Mk I and an Elcomat HR
for the Mk II, both from the Möller–Wedel Company. Both were calibrated by the PTB, but in
the case of the Elcomat HR, two calibrations were made in 2003 and 2006. The performance
of the Elcomat HR was the subject of an extensive study by the PTB. In the first instance
using the mirror attached to the torsion balance, and in the second instance the calibration
was undertaken with a mirror supplied by the PTB. In both calibrations, the optical path,
apertures and windows were those used in the G experiment. The electronics had been modified
by the manufacturer to enable precise timing to be made of the angle data sent from the
autocollimator to the controlling computer of the experiment and thus correctly related to the
time signals from the atomic clock which was the time reference. The PTB calibration gave
the deviations from nominal over a range of ±100 as at 1 as intervals with a resolution of
0.1 mas. The deviations did not exceed 3 mas over about 40 as near the centre of the range
within which almost all the measurements were made; note that the G deflection amounted to
a total of 31 as. The absolute type B uncertainty of the calibration, common to both servo and
Cavendish measurements, was 1.5 mas with relative errors within this range being at the level
of the resolution.

In the Mk II experiment, the angle was measured by a single reflection of the autocollimator
beam from a mirror mounted near the axis of the torsion balance. This is in contrast to the Mk
I experiment in which the torsion balance was equipped with a set of mirrors that multiplied
the angle by a factor of 6. Comparisons between deflection measurements made using the
multiplying optics and directly showed agreement well within the standard deviation of the
mean of the values obtained directly, but these were of course some six times larger than those
obtained with the multiplying optics. After the Mk I work was completed, there was some concern
about the effects of non-flatness of these multiplying mirrors that made us decide to use a simple
single reflection system for the Mk II. As was the case for many of the changes to the Mk I
experiment, this modification was not motivated by any real hard evidence for the presence of a
systematic effect in the Mk I experiment, but more by the desire to eliminate any possible source
of systematic uncertainty that remained undiagnosed in the first experiment.

The disadvantage of course is that the six times gain in sensitivity is lost although this was
compensated by the improved resolution and accuracy of the Elcomat HR.

There is a straightforward correction that has to be applied to the angle measured by the
autocollimator owing to the refractive indices being that of air and vacuum on either side of
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the window in the vacuum can. The true angle, ψ , can be written in terms of the measured angle,
ψm, as

ψ = nair

nvac
ψm, (6.1)

where we use nair = 1.000271 (NIST Engineering Metrology Toolbox; http://emtoolbox.nist.gov/
Wavelength/Edlen.asp).

7. Timing
The period of oscillation was determined by fitting, using a nonlinear least-squares algorithm,
oscillation amplitude and time pairs to the equation of a damped harmonic oscillator with
a constant offset. The timing of the data pairs in the Mk II experiment was referenced to a
10 MHz signal from an atomic frequency standard in the BIPM time section. The corresponding
uncertainty in G was a nominal 1 ppm. In the Mk I experiment, a much larger uncertainty had
been given, 35 ppm, because of doubts as to the reliability of the link to the then atomic frequency
standard of the BIPM.

8. Calculation of the moment of inertia of the torsion balance
The moment of inertia, I, of the torsion balance about its axis of rotation was both calculated
and measured. Because it enters directly into the calculation of G in the Cavendish method,
its uncertainty must be equal to or less than the uncertainty sought in G. The torsion balance
assembly consists of an aluminium alloy disc, the cylindrical copper–tellurium test masses, the
copper–beryllium clamping base, the rectangular cross-section copper beryllium clamping block
that holds the torsion strip, an aluminium cylindrical tower and an aluminium tube with lugs for
the attachment of the mirror support plates and the mirrors. The assembly was held together by
32 M3 screws and eight M6 screws (for the torsion strip clamp). In view of the complexity of the
torsion balance, see figures 1, 2 and 5, the calculation of its moment of inertia posed a considerable
challenge. This was easier for the Mk II apparatus, because every component had been made
using a computer-aided design program and constructed on numerically controlled machines
in the BIPM workshop. The relative positions and dimensions of every component were, in
principle, known. Nevertheless, manual checks were carried out with the CMM and a micrometer
to verify the most important dimensions. These included the measurement with the CMM of the
position and dimension of every hole and cut-away seating for the test masses in the torsion
disc as well as multiple measurements of the thickness of the disc using the micrometer. It was
discovered that in the final machining of the 8 mm thick disc, the milling machine had removed
about 10 µm too much over about one-third of the disc on one side. The uneven thickness of the
torsion disc was modelled as a superposition of a uniform disc with the mean thickness with
associated holes and a disc of varying thickness and its associated cylindrical holes. Note that the
torsion discs for the Mk I apparatus was manufactured from duralumin, whereas that for the Mk
II experiment was made from AU 4G aluminium alloy.

The moment of inertia of the torsion balance was calculated using both the primitive
geometrical shapes described above and computer-aided design packages together with the
measured masses of the components. The torsion disc without the test masses, modelled as a
nominal uniform disc, comprised approximately 9% of the total inertia. The sum of the other
components on the torsion balance including the torsion strip clamp, the mirror assembly, screws,
etc., amounted to about 0.79%. The uncertainty, δIi, in each component of the moment of inertia,
I, is computed as (

δI
I

)
i
=
√(

δdi

di

)2
+
(
δmi

mi

)2
, (8.1)

where di and δdi are the radius of gyration of each component and its uncertainty and mi and
δmi are the mass of the component and its weighing uncertainty. The final uncertainty in the
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A

C

B

Figure 5. The torsion balance illustrating the configuration in preparation for the measurement of moment of inertia showing
(A) the two stainless steel balls in place in their inner position, (B) the outer position of one of the balls and (C) one of the two
aluminium cylinders occupying the place of two of the test masses necessary for the electrostatic servo control of the torsion
balance. The CMM probe for measuring the position of the balls is visible. The whole of the top assembly has to be removed for
the measurement of the position of the balls but has to be in place for the successive measurement of the period with the balls
in their inner and outer positions.

moment of inertia of the torsion balance, not including the test masses, amounted to 11 ppm of
the total moment of inertia. The uncertainty in the moment of inertia of the test masses alone
amounted to 8 ppm.

The moment of inertia of the torsion balance disc assembly in the Mk II apparatus was checked
by measurement. A scheme was devised in which a pair of identical stainless steel spheres of
known mass (about 100 g) could be placed first near the outer edge of the disc and second close to
its central pillar. This was done at the end of the whole experiment when the test masses had been
removed from the torsion balance. In order to mount the stainless steel spheres and to provide
electrodes for the servo control needed to manipulate the torsion balance in vacuum, a number
of small aluminium pieces had to be made to support the spheres and to replace two of the test
masses as electrodes (figure 5). Their mass and shapes were taken into account in the calculation
of the inertia. From measurement of the periods of free oscillation of the balance with the spheres
in these two carefully measured positions, we could determine the change in moment of inertia
of the disc assembly. By assuming that the restoring torque remained unchanged in the two
configurations the inertia of the disc assembly could be determined. From this, a value for the total
inertia was calculated having an estimated uncertainty of 25 ppm. It differed from the calculated
value by only 9 ppm. In the Mk I experiment, the moment of inertia of the torsion balance was
simply calculated. The value of the total moment of inertia of the Mk II torsion balance is

I = 0.0762332(10) kg m2, (8.2)

with an uncertainty of 13 ppm.
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9. Calculation of the torque
For the purposes of the calculation of the torque factors coupling the torsion balance assembly and
the source mass/carousel assembly, Γs and Γc for the servo and Cavendish methods, respectively,
the experiment can be considered to comprise a set of test objects mounted on the torsion balance.
These are attracted by a set of source objects mounted on the carousel. Both source and test objects
are defined to be either cylinders, with vertical axes, or simple points.

The test cylinders comprised the four test masses themselves, the torsion balance disc of
uniform thickness and its array of cylindrical holes in the disc of varying thickness. The torsion
strip clamping block, the tower supporting the mirror mounting tube and the mirror mounting
block also had components that were modelled as test cylinders.

The test points comprised the ‘overlap’ regions, the points that generate the uneven part of the
disc surface, the trim masses (phosphor bronze balls, two of mass 1.49 g and one of 19.17 g used
to finely tune the horizontality of the disc), the screws and various non-cylindrical parts of the
mirror column, the strip clamping block, the mirror mounting tube, the mirror mounting plates
and the mirrors themselves. The ‘overlap’ regions were adjacent to each of the four test masses
and were created by the partial overlap between the outer and first inner array of holes. This
design allowed the electrostatic puller electrodes to be positioned adjacent to the source masses
without being obstructed by the torsion disc.

The source cylinders comprised the copper–tellurium source masses which are modelled as
geometrically perfect cylinders of uniform density.

The source points comprised the components of the kinematic mounts: six grooves in each
source mass, three balls and three grooved in the aluminium alloy carousel for each source mass.

The total torque was modelled as the sum of the following components:

— the attraction between the test cylinders and uniform cylindrical source masses. The
torque between the source cylinders and the four test masses is the largest contribution
and this is calculated by numerical integration over the test mass volumes of the semi-
analytical expression [24] for the gravitational field generated by the source masses. We
used numerical algorithm group routines to calculate the elliptic integrals required in
[24]. The torques owing to the other cylinders are calculated using a multipole expansion
(referred to in the 2001 paper but not published);

— the attraction between the test cylinders and the source points. This torque is calculated
using the semi-analytical result in [24] to calculate the field owing to the test cylinders at
the source points. This amounted to +1 ppm of the total torque;

— the attraction between the test points and the source cylinders. This is calculated again
using the result in [24] (+150 ppm); and

— the correction owing to a linear density gradient across the source masses. We calculate
the attraction by numerical integration between the inhomogeneous part of the source
masses and the test masses assuming the measured linear density gradient for each
source mass. This amounted to a reduction in Γs of 22 ppm and an increase in Γc of 2 ppm.

The coordinates, ri, of all the source and test components were collected into data files. The files
also contained, in the case of cylinders, radius, height and density, or in the case of points, masses,
for each source and test object. The density of the test masses was calculated based on the ‘true
mass’ which is the density that would be deduced from a weighing in vacuum. The density of
the source masses was calculated from the ‘effective mass’. This density would also be deduced
from the true mass but less the density of air at the nominal standard conditions of our ambient
atmospheric pressure, temperature and air composition. These data were used to compute both
the moment of inertia and the gravitational torque factors Γ . The torque was calculated in the
usual way using

Γz =
∑

ij

Xi × FXj, (9.1a)
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where

FXj = Xj − Xi

|rj − ri|3
(9.1b)

and Xi and Xj are the positions of test and source object in the horizontal x, y plane, respectively.
This expression, in terms of the pure forces produced by the source objects, is valid provided
that the test objects are cylindrically symmetric about their individual centres of mass. Higher-
order terms owing to quadrupole moments (q22, for example) of the individual components of
the torsion balance assembly are negligible.

Consistency between the three methods of calculating the Newtonian torques (numerical
integration, the expression derived from [24] and the multipole expansion) was checked by
direct calculation.

In the initial Cavendish experiment, the offset between the average position of the source
masses and the test masses was established by rotating the carousel through angles +θ and −θ
and ensuring that the magnitude of the torques was the same. The rotation angle was then
varied between 18◦ and 20◦ with a peak in the torque difference occurring at θM = 18.898◦. In
all subsequent measurements, the offset angle was found in a similar fashion, and the source
masses rotated about this offset by ±18.898◦. The calculations showed that the offset angle
differed by 6.30 mrad between the servo and Cavendish configurations of the source masses and
this was in good agreement with the difference in the mean angular positions of the masses as
measured by the CMM (6.31 mrad). Calculation also showed that, owing to asymmetries in the
mass distributions, the peak torque difference was a weak function of both the offset and the
amplitude. Finding the absolute peak would have entailed adjustment of the offset at a level of
much better than 1 ppm which was not possible. However, given the amplitude of θM, the offset
and the peak torque is defined. The accuracy of the angle measured was estimated to be about
0.001◦ (given by the number of stepper motor steps required to make a complete rotation) and the
peak torque could be calculated with negligible uncertainty.

The values of the servo and Cavendish torque coefficients were

Γs = 471.5875 kg2 m−1 (9.2a)

and

Γc = 471.6511 kg2 m−1. (9.2b)

The two values differ because of the shift in position of the source masses when they were rotated
to be in different positions in their kinematic mounts. The change in the orientation of the density
gradients produces a smaller difference.

10. Possible magnetic interactions between the source and test masses
An experiment was carried out in which the torque was measured when the source masses
were removed from the carousel leaving only the three 5 mm supporting balls in the V-grooves
below each mass. The resulting signal, which amounted to 65 ppm of the total G signal with the
source masses present, was consistent with expectations based solely on calculated gravitational
interactions between the balls and the conical holes in the carousel with the torsion balance.
Therefore, we focus on possible magnetic interactions that might influence the measurements
when the position of the source masses is changed relative to the test masses.

The design of the BIPM G experiment results in a large signal torque between the source and
test masses. This can be demonstrated simply by a naive calculation of the gravitational attraction
between two osculating Cu–0.7% Te spheres, one of which is 11.2 kg and the other 1.16 kg,
resulting in an attractive force of about 90 nN. To compare with, say, the magnetic force between
the spheres owing to their magnetic moments induced by the Earth’s magnetic field, a similar
calculation can be made assuming that the line of centres of the osculating spheres is aligned in
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the field, which is about 40 A m−1 at Sèvres. We measured the volume magnetic susceptibility of
the Cu–0.7% Te alloy to be essentially equivalent to that of pure copper (χ = −9 × 10−6), which
results in a force that is nine orders of magnitude smaller than the gravitational attraction. Note,
however, that if both spheres had been made of high-quality austenitic stainless steel (χ ≈ 0.003),
then the magnetic force would be only four orders of magnitude less than the gravitational force
and a more searching analysis would have been required. In this worst-case model, an extraneous
magnetic field strength of about 3.3 kA m−1 would have been required to produce an erroneous G
signal of order 1 × 10−5 in our apparatus. Field strengths of this size owing to nearby equipment,
such as the CMM, were not present. As noted above, a different CMM was used for our previous
work, and the large metallic parts of both were made of aluminium alloy.

Remanent magnetization in various pieces of the apparatus might also lead to significant
torques between the torsion balance and the source masses. We verified that the largest pieces,
made of Cu–0.7% Te and aluminium alloy, were magnetically ‘clean’. We also screened smaller
pieces of the torsion balance made of a variety of different materials in order to ensure handbook
magnetic susceptibilities and the absence of serious remanent magnetism. Note that cold-
working, such as the cutting of threads in screws during their manufacture, can degrade the
magnetic properties of some ‘non-magnetic’ alloys. We found many examples of this and rejected
the pieces. In addition, the use of steel cutting tools during the shaping of copper pieces may leave
a ferromagnetic deposit on soft metals which would need to be removed by acid etch. The Cu–Te
alloy did not have this problem, unlike oxygen-free high thermal conductivity (OFHC) copper.

In the final version of our apparatus, the torsion strip was suspended from crossed knives
forming a universal joint in order that the test mass assembly, including the aluminium disc,
would hang plumb. The pendulum modes of the strip were suppressed by a magnetic damper
installed above the crossed knives. Acid-etched OFHC copper was used in the damper. The
aluminium construction of the moving structure of both CMMs would have resulted in no
significant magnetic interactions with either the source masses or torsion balance.

11. Uncertainty calculations for the value of G

(a) Uncertainty in the torque due to mass positions
We break down the uncertainty in the positions of the source and test masses into random and
systematic components. Using the gauge blocks, we established a type B uncertainty for the
source and test mass positions of 0.5 µm, and we find fractional uncertainties for δRb/R and
δrb/r of 2 and 3 ppm. The type B uncertainties owing to the source mass and test mass positions
affect the servo and the Cavendish measurements in different proportions as discussed below. An
uncertainty owing to the differences between the times when the temperature measurements and
the dimensional metrology are made is added in quadrature to the type A uncertainties.

We use the simple model given in equation (5.1) to calculate the uncertainties in the torque
owing to the positioning uncertainties. The test and source mass arrangements are assumed to
have a perfect fourfold symmetry and we assume that the centres of the source and test masses
are in the same horizontal plane. The simple model gives a peak value for the torque at 22.5◦
(rather than approx. 19◦) which agrees with the full calculation to within a few per cent.

We can estimate the uncertainties in Γ using the uncertainties in the mass positions
described above

δΓ

Γ
= δm

m
+ δM

M
+ 4δr

r
− 5δR

R
. (11.1)

We can separate the systematic and random contributions for the position uncertainties for a
particular measurement as

δΓ

Γ
= δm

m
+ δM

M
+ δα + 4

δra

r
− 5

δRa

R
, (11.2a)
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where, from §5, δra = δRa = 0.5 µm. The quantity δα corresponds to the change in torque owing
to an overall change in length scale. For the servo measurement

δαs = 4
δrb

r
− 5

δRb

R
, (11.2b)

which amounts to 4 ppm for δrb = δRb = 0.4 µm. As shown below, for the Cavendish measurement

δαc = 2
δrb

r
− 5

δRb

R
= −3 ppm. (11.2c)

Note that the type A uncertainty for the test masses positions produces a correlated uncertainty
in both methods, so we do not distinguish between test mass type A coordinate uncertainties
for the two methods. If we assume a temperature variation of 0.1 K, then this will give a torque
variation that will scale as δα for both methods. We can write δαsT = 2 ppm and δαcT = 6.9 ppm
for aluminium alloy.2 These uncertainties are considered to be random and uncorrelated between
the two methods.

(b) The servo method
In the servo method, the gravitational torque can be calculated in terms of the measured
capacitance gradients and the measured differences in RMS voltages as described in §3

τs = (1 + δV)
nair

1
2

{
dCAC

dθ
�〈V2

A〉 + dCBC

dθ
�〈V2

B〉 + dCAB

dθ
�
〈
(VA − VB)2

〉}
, (11.3)

where δV = −30 ppm is the calibration correction for the AC voltmeters (given in §3), and the
refractive index corrects the autocollimator angle measured in air to that in vacuum as described
in §6.

For the purposes of modelling the uncertainties, we can write

τs ≈ β�V2, (11.4)

with β ∼ dCAC/dθ .
The uncertainty in the value of G measured by the servo method is then

δGs

G
= δβ

β
+ 2

δ�V
V

−
(
δM
M

+ δm
m

+ 4
δra

r
− 5

δRas

R
+ δαs + δαsT

)
, (11.5)

where we have identified the random uncertainty on the source mass coordinates in the servo
measurement, δRas.

Further, the capacitance gradient has a systematic component and a statistical contribution:
there are uncertainties due to the absolute accuracy of the angle and capacitance changes over the
range of the calibration and there is the statistical uncertainty, δβa, from measurement noise:

δβ

β
= δ�C
�C

− δ�θ

�θ
+ δβa

β
. (11.6a)

So we can write

δGs

G
= δ�C
�C

− δ�θ

�θ
+ δβa

β
+ 2

δ�V
V

−
(
δM
M

+ δm
m

+ 4
δra

r
− 5

δRas

R
+ δαs + δαsT

)
. (11.6b)

In the experimental procedure, the capacitance gradient β that was used to calculate the torques
from the voltages was the mean of the capacitance gradients measured before and after the torque
measurements. During a sequence of torque measurements, the dimensional metrology and all

2In [2], the thermal uncertainty was added in quadrature to the type B uncertainty in dimensions and this decreases the
correlation (more negative) and gives rise to a difference in the final uncertainty of 2 ppm in the results given here.
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type B uncertainties are essentially constant, and we determine the value of G from the differences
in gravitational torques acting on the torsion balance so we can write

δτs = δ(β�V2) + δn, (11.7a)

where δn is a random change in torque produced by ground vibrations for example. However,
any random change in the value of β that occurs that is within the bandwidth of the servo will be
balanced by a change in the applied servo voltages

δτs = 0 = δβa�V2 + βδ�V2 + δn. (11.7b)

The type A uncertainties in β become indistinguishable from the noise torques and so we can
define a general noise torque

δn′ = βδ�V2 = −δβa�V2 − δn. (11.7c)

The type A uncertainty in the capacitance gradient can then be considered to be part of the
statistical noise in the torque measurements with δτs = −δβa�V2 − δn. The standard deviation
of the mean of the 10 servo measurements was 30 ppm and this was consistent with the standard
deviations of the individual measured torques, which themselves included the recalibration of
the β values between each torque sequence. The standard deviation of the mean of the 10 torque
sequences measured by the Cavendish method was 19 ppm. We can interpret this difference to
be owing to variations in β. We found that the standard deviations of the calibration constants
measured between each torque sequence were far too large to be consistent with the variance of
the torque data, and we attribute this to high-frequency electrical noise affecting the capacitance
bridge which evidently was averaged out. Finally, we have the following equation describing the
uncertainties in the servo measurement:

δGs

G
= − δM

M
− δm

m
− 4

δra

r
+ 5

δRas

R
− δαs − δαsT − δ�θ

�θ
+ δ�C
�C

+ 2
δ�V

V
+ δτs

τs
. (11.7d)

(c) The Cavendish method
We calculate a value for G for this method using equations (1.2) and (2.6b)

τc = nairkr(ωm)�θc, (11.8)

where kr(ωm) is the angular stiffness of the torsion balance at the frequency of the measurements.
The angle through which the torsion balance moves is �θc. The refractive index correction is
described in §6. We relate the stiffness of the suspension which is measured at the resonance of
the pendulum to that at low frequency using the anelastic correction in §2:

τc = nair

(
1 − ke

kg + ke

2�
π

ln
{

Tm

T0

})
I
(

2π
T0

)2
�θc. (11.9)

We find the relative uncertainty in G for this method to be

�Gc

G
= δk(ωm)

k
+ δ�θc

�θc
−
(
δM
M

+ δm
m

+ 4δra

r
− 5

δRac

R
+ 4

δrb

r
− 5

δRb

R
+ αcT

)
+ δτc

τ
, (11.10a)

where δτc is the random uncertainty owing to measurement noise and δRac is the uncertainty in
the position of the source masses in the Cavendish experiment. A conservative estimate of a bias
in δk(ωm) equates it to the total correction for anelasticity that we apply to the final result for G in
equation (11.9)

δk(ωm) = δkr + δ(Iω2
0) (11.10b)

and δkr = ke

ke + kg

2�
π

ln
{

Tm

T0

}
. (11.10c)

The moment of inertia comprises two terms

I = 4mr2 + It, (11.11)
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where It is the moment of inertia due to the torsion balance without the test masses in place
having an uncertainty δIt. We can now rewrite equation (11.10a) as

�Gc

G
= δm

m
+ 2

δra

r
+ 2

δrb

r
+ δIt

I
− 2

δT0

T0
+ δk

kr
+ δ�θc

�θc

−
(
δM
M

+ δm
m

+ 4
δra

r
− 5

δRac

R
+ 4

δrb

r
− 5

δRbc

R

)
+ δτc

τ
, (11.12a)

or finally

�Gc

G
= − δM

M
− 2

δra

r
+ 5

δRac

R
− αc − δαcT + δ�θc

�θc
− 2

δT0

T0
+ δIt

I
+ δk

kr
+ δτc

τ
, (11.12b)

where T0 is the period of free oscillation of the torsion balance.

(d) Combination of uncertainties
We can write the uncertainties for both measurements in matrix form(

δGs

δGc

)
= A u, (11.13a)

where u is a vector of the values for the uncertainties in the parameters and A is a matrix of the
factors which multiply each component of the uncertainty. We use a shorthand notation where
we write the fractional uncertainty δp/p in parameter p as δp. We can write

A =
(

−1 −1 −4 5 0 −1 −1 0 0 −1 1 2 0 0 1 0
0 −1 −2 0 5 0 0 −1 −1 0 0 0 1 1 0 1

)
, (11.13b)

and the transpose of u is

u′ = (δm δM δra δRas δRac δαs δαsT δαc δαcT δ�θc δ�C δ�V δIt δk0b δτs δτc).
(11.13c)

The variances and covariances of the two values of G can then be written as(
< δG2

s > < δGsδGc >

< δGsδGc > < δG2
c >

)
=
〈(
δGs

δGc

)(
δGs δGc

)〉
= 〈uAAtut〉 =

(
σ 2

s κ

κ σ 2
c

)
, (11.14a)

where the variances are
σ 2

s =
∑

j

A1jA1jδp
2
j (11.14b)

and
σ 2

c =
∑

j

A2jA2jδp
2
j , (11.14c)

and the covariance is
κ =

∑
j

A1jA2jδp
2
j . (11.14d)

We can write a general combination of the values of G as

Gw = λGs + μGc, (11.15a)

with its uncertainty δGw,
δG2

w = λ2σ 2
s + 2λμκ + μ2σ 2

c . (11.15b)

The uncertainty in the difference in the two values of G can be found by setting λ= 1 and μ= −1.
Using the values in table 1, we find δGDiff = 104 ppm. As the measured difference between the
values, as given in §12, is also 106 ppm this indicates that our statistical analysis is consistent with
this difference and provides an, albeit crude, consistency check on our estimated uncertainties.
Note that if the two methods were completely uncorrelated the uncertainty on their difference

 on October 15, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


26

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140032

.........................................................

Table 1. Values for the uncertainities on the parameters required to calculate G in equation (11.13c).

fractional
quantity uncertainty, ppm

test masses δm/m (correlated) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

source masses δM/M (correlated) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test mass type A servo (correlated) 17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

test mass type A Cavendish (correlated) 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

source mass type A for both servo and Cavendish (uncorrelated) 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

servo type B uncertainty for source and test masses δαs 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cavendish type B uncertainty for source and test masses δαc −3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

servo type A uncertainty for 0.1 K temperature change δαsT −2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cavendish type A uncertainty for 0.1 K temperature change δαcT −7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

angle measurement δ�φ/�φ (anti-correlated) 47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

capacitance calibration δ�C/�C 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

voltage calibration 2 δV/V 12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

timing error 2�T0/T0 0.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

moment of inertia of torsion disc 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

anelasticity δk/kr 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncertainty in mean servo torque δτs/τ 30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uncertainty in mean Cavendish torque δτc/τ 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

net uncertainty on servo valueσs 61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

net uncertainty on Cavendish valueσc 54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covariance κ −2080
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

correlation coefficient −0.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

would be 81 ppm which is the quadrature sum of the uncertainties on each value. We can calculate
an unbiased weighted mean by setting μ= 1 − λ [25] and by choosing a value of μ that minimizes
equation (11.15b). Using the experimental values, we find δGComb = 25 ppm with the weight for
the servo and Cavendish results being 0.46 and 0.54, respectively. The values of the parameters
are given in table 1.

12. A value for Newton’s constant of gravitation
The peak-to-peak servo torque, τs, obtained as an unweighted mean of 10 data runs was
3.148869(94) × 10−8 N m and using equations (9.2a) and (11.3) we can write

Gs = τs

Γs
= 6.67515(41) × 10−11 m3 kg−1 s−2 (61 ppm). (12.1a)

The unweighted mean of the 10 data runs giving a value of the peak-to-peak deflection angle of
0.1529322(29) mrad using equations (9.2b), (8.2) and (11.8) we can write

Gc = τc

Γc
= 6.67586(36) × 10−11 m3 kg−1 s−2 (54 ppm). (12.1b)

We have used the values for the uncertainties in the experimental measurements given in §11.
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The weighted mean of the values is

G = 6.67554(16) × 10−11 m3 kg−1 s−2 (25 ppm). (12.2)

The difference between the values amounts to 106 ppm. This is consistent with an uncertainty in
this difference which is 104 ppm, as was calculated in the previous section.

This value of G differs from our published result [2] by 13 ppm (see erratum in [2]) due to

— an incorrectly applied correction for density homogeneity of −32 ppm to the Cavendish
result; that correction had been included in Γc;

— a correction of −13 ppm for anelasticity with an uncertainty of 4 ppm, which we now
believe should be a correction of −6 ppm with an uncertainty of 6 ppm; and

— an unnecessary correction of +8 ppm included in the calculation for G in both servo and
Cavendish methods for an offset in the alignment of the source masses which should
not exist because the alignment procedure eliminates such a misalignment. In addition,
more accurately represented thermal effects in the dimensional metrology decreased the
correlation coefficient from −0.58 to −0.63; this has reduced the uncertainty on the final
value of G from 27 to 25 ppm.

13. Final remarks
In our 2013 paper, we remark that the value then given and that published in 2001 are statistically
independent and that they are also statistically consistent. We also referred to the fact that each is
based on the average of two largely independent methods, the servo and the Cavendish. At the
start of this paper, in describing our method we said: in an experiment in which there are two or more
independent methods, one has first to look for errors in each until they all agree. When this is the case, the
only errors that can remain are those in the much more limited set common to all. We note again that in
our experiments the servo method relies essentially on electrical and angle measurements while
the Cavendish relies on timing and angle measurements, but that the same relative error in angle
measurement produces equal but opposite effects in the two methods and is thus eliminated
in the average of the two. Thus, it seems evident that if the servo and Cavendish results agree
within their own uncertainties, this is strong evidence that unknown errors in electrical, angle
and timing must be at or below the level of these uncertainties. The experiment will still, however,
be subjected to unknown errors in other measured quantities that are common to both servo and
Cavendish methods, notably in our case, dimensional metrology and source mass properties. But,
the unknown errors in these parameters are the same in both the servo and Cavendish results.
This would not be the case if the experiments were done separately.

We believe therefore that an experiment such as ours in which two methods were used gives
added security and confidence in the results over and above that which can be obtained by a single
method. We believe that this parallel process is more efficient, effective and less susceptible to bias
than individual experimental teams working on one experimental configuration and comparing
their result with those already published.

If the third, timing method could be successfully achieved, given a sufficiently stable
temperature, this would give additional security, because it would depend essentially on timing.
The principal common errors to all three methods would be (i) dimensional metrology and
(ii) density uniformity of the source and test masses plus, of course, possible other errors of which
we are unaware and which may have affected our present results by significant amounts.

Acknowledgements. The authors are pleased to acknowledge the work of many others during the years that
the BIPM G experiment was underway, in particular Sam Richman, Research Fellow from 1997 to 1999 who
worked on the Mk I apparatus and contributed to work on anelasticity and Alain Picard, Jean Hostache,
Francois Delahaye and Dominique Reymann of the BIPM for help in the construction and calibration of
electrical instruments in the Mk I apparatus, Wes Tew Guest Worker in 1992 who contributed to some of the
studies of anelasticity, J Probst and Andreas Just of the PTB who carried out invaluable studies and calibration
of the autocollimators, the LNE for calibration of end gauges, the Mk II source masses and AC voltmeters and
finally Jose Sainjaime at the time Head of the BIPM workshop and his staff for the construction of the Mk I

 on October 15, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


28

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140032

.........................................................

and Mk II apparatus which were of the highest mechanical perfection without which none of this work would
have been possible. We also thank participants in the Royal Society meeting for constructive and helpful
discussions. We also wish to thank the referee for his very helpful suggestions.

References
1. Quinn TJ, Speake CC, Richman SJ, Davis RS, Picard A. 2001 A New determination of G using

two methods. Phys. Rev. Lett. 87, 111101. (doi:10.1103/PhysRevLett.87.111101)
2. Quinn TJ, Parks H, Speake CC, Davis RS. 2013 Improved determination of G using two

methods. Phys. Rev. Lett. 111, 101102. (doi:10.1103/PhysRevLett.111.101102) Erratum. 2014
Phys. Rev. Lett. 113, 039901. (doi:10.1103/PhysRevLett.111.039901)

3. Cohen ER, Taylor BN. 1987 The 1986 adjustment of the fundamental constants. Rev. Mod. Phys.
59, 1121–1148. (doi:10.1103/RevModPhys.59.1121)

4. Luther GG, Towler WR. 1982 Redetermination of the Newtonian gravitational constant G.
Phys. Rev. Lett. 48, 121–123. (doi:10.1103/PhysRevLett.48.121)

5. Michaelis W, Haars H, Augustin R. 1996 A new precise determination of Newton’s
gravitational constant. Metrologia 32, 267–276. (doi:10.1088/0026-1394/32/4/4)

6. Boys CV. 1895 On the Newtonian constant of gravitation. Phil. Trans. R. Soc. Lond. A 186, 1–72.
(doi:10.1098/rsta.1895.0001)

7. Quinn TJ, Speake CC, Brown LM. 1992 Materials problems in the construction of long-period
pendulums. Philos. Mag. 65, 261–276. (doi:10.1080/01418619208201522)

8. Quinn TJ, Speake CC, Davis RS, Tew W. 1995 Stress-dependent damping in Cu–Be torsion and
flexure suspensions at stresses up to 1.1 GPa. Phys. Lett. A 197, 197–208. (doi:10.1016/0375-
9601(94)00921-B) Erratum. 1995 Phys. Lett. A 198, 474. (doi:10.1016/0375-9601(95)00095-K)

9. Quinn TJ, Davis RS, Speake CC, Brown LM. 1997 The restoring torque in wide Cu–Be torsion
strips. Phys. Lett. A 228, 36–42. (doi:10.1016/S0375-9601(97)00082-0)

10. Quinn TJ, Speake CC, Davis RS. 1997 Novel torsion balance for the measurement of the
Newtonian constant of gravitation. Metrologia 34, 245–249. (doi:10.1088/0026-1394/34/3/6)

11. Richman SJ, Quinn TJ, Speake CC, Davis RS. 1999 Preliminary determination of G using the
BIPM torsion strip balance. Meas. Sci. Technol. 10, 460–466. (doi:10.1088/0957-0233/10/6/308)

12. Speake CC, Quinn TJ, Davis RS, Richman SJ. 1999 Experiment and theory in anelasticity. Meas.
Sci. Technol. 10, 430–466. (doi:10.1088/0957-0233/10/6/303)

13. Speake CC, Gillies GT. 1987 Why is G the least precisely known physical constant? Z.
Naturforsch. A 42, 663–669.

14. Ledbetter HM. 1982 Temperature behaviour of Young’s moduli of forty engineering alloys.
Cryogenics 22, 653–656. (doi:10.1016/0011-2275(82)90072-8)

15. Kuroda K. 1995 Does the time-of-swing method give a correct value of the Newtonian
gravitational constant? Phys. Rev. Lett. 75, 2796–2798. (doi:10.1103/PhysRevLett.75.2796)

16. Heyl PR, Chrzanowski P. 1942 A new determination of the constant of gravitation. J. Res. Natl
Bur. Stand. 29, 1–31. (doi:10.6028/jres.029.001)

17. Speake CC. 2005 Newton’s constant and the 21st century laboratory. Phil. Trans. R. Soc. A 363,
2265–2287. (doi:10.1098/rsta.2005.1643)

18. Smythe WH. 1989 Static and dynamic electricity, p. 76, 3rd edn. New York, NY: Hemisphere
Publishing.

19. Leslie WHP. 1961 Choosing transformer ratio arm bridges. Proc. IEE, Part B: Electron. Commun.
Eng. 108, 539–545. (doi:10.1049/pi-b-2.1961.0093)

20. Speake CC, Davis RS, Quinn TJ, Richman SJ. 1999 Electrostatic damping and its effect
on precision mechanical experiments. Phys. Lett. A 263, 219–225. (doi:10.1016/S0375-9601
(99)00597-6)

21. Michaelis W, Melcher J, Haars H. 2004 Supplementary investigations to PTB’s evaluation of
G. Metrologia 41, L29–L32. (doi:10.1088/0026-1394/41/6/L01) Erratum. 2005 Metrologia 42, 67.
(doi:10.1088/0026-1394/41/1/C01)

22. D’Urso C, Adelberger EG. 1997 Translation of multipoles in a 1/r potential. Phys. Rev. D 55,
7970–7972. (doi:10.1103/PhysRevD.55.7970)

23. Trenkel C, Speake CC. 1999 Interaction potential between extended bodies. Phys. Rev. D 60,
107501. (doi:10.1103/PhysRevD.60.107501)

24. Chen YT, Cook AH. 1993 Gravitational experiments in the laboratory, p. 115. Cambridge, UK:
Cambridge University Press.

25. Cox MG, Eiø C, Mana G, Penecchi F. 2006 Generalized weighted mean of correlated quantities.
Metrologia 43, S268–S275. (doi:10.1088/0026-1394/43/4/S14)

 on October 15, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1103/PhysRevLett.87.111101
http://dx.doi.org/doi:10.1103/PhysRevLett.111.101102
http://dx.doi.org/doi:10.1103/PhysRevLett.111.039901
http://dx.doi.org/doi:10.1103/RevModPhys.59.1121
http://dx.doi.org/doi:10.1103/PhysRevLett.48.121
http://dx.doi.org/doi:10.1088/0026-1394/32/4/4
http://dx.doi.org/doi:10.1098/rsta.1895.0001
http://dx.doi.org/doi:10.1080/01418619208201522
http://dx.doi.org/doi:10.1016/0375-9601(94)00921-B
http://dx.doi.org/doi:10.1016/0375-9601(94)00921-B
http://dx.doi.org/doi:10.1016/0375-9601(95)00095-K
http://dx.doi.org/doi:10.1016/S0375-9601(97)00082-0
http://dx.doi.org/doi:10.1088/0026-1394/34/3/6
http://dx.doi.org/doi:10.1088/0957-0233/10/6/308
http://dx.doi.org/doi:10.1088/0957-0233/10/6/303
http://dx.doi.org/doi:10.1016/0011-2275(82)90072-8
http://dx.doi.org/doi:10.1103/PhysRevLett.75.2796
http://dx.doi.org/doi:10.6028/jres.029.001
http://dx.doi.org/doi:10.1098/rsta.2005.1643
http://dx.doi.org/doi:10.1049/pi-b-2.1961.0093
http://dx.doi.org/doi:10.1016/S0375-9601(99)00597-6
http://dx.doi.org/doi:10.1016/S0375-9601(99)00597-6
http://dx.doi.org/doi:10.1088/0026-1394/41/6/L01
http://dx.doi.org/doi:10.1088/0026-1394/41/1/C01
http://dx.doi.org/doi:10.1103/PhysRevD.55.7970
http://dx.doi.org/doi:10.1103/PhysRevD.60.107501
http://dx.doi.org/doi:10.1088/0026-1394/43/4/S14
http://rsta.royalsocietypublishing.org/

