A Stefan problem on an evolving surface

Amal Alphonse and Charles M. Elliott

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

We formulate a Stefan problem on an evolving hypersurface and study the well posedness of weak solutions given L^1 data. To do this, we first develop function spaces and results to handle equations on evolving surfaces in order to give a natural treatment of the problem. Then, we consider the existence of solutions for L^∞ data; this is done by regularization of the nonlinearity. The regularized problem is solved by a fixed point theorem and then uniform estimates are obtained in order to pass to the limit. By using a duality method, we show continuous dependence, which allows us to extend the results to L^1 data.

1. Introduction

The Stefan problem is the prototypical time-dependent free boundary problem. It arises in various forms in many models in the physical and biological sciences [1–4]. In this paper, we present the theory of weak solutions associated with the so-called enthalpy approach [1] to the Stefan problem on an evolving curved hypersurface.

Our interest is in the existence, uniqueness and continuous dependence of weak solutions to the Stefan problem

$$\partial\cdot e(t) - \Delta_{\Omega(t)} u(t) + e(t) \nabla_{\Omega(t)} \cdot w(t) = f(t) \quad \text{in } \Omega(t),$$

$$e(0) = e_0 \quad \text{on } \Omega(0),$$

and

$$e \in E(u) \quad \text{(1.1)}$$

posed on a moving compact hypersurface $\Omega(t) \subset \mathbb{R}^{n+1}$ evolving with (given) velocity field w, where the energy $E: \mathbb{R} \rightarrow P(\mathbb{R})$ is defined by

$$E(r) = \begin{cases}
 r & \text{for } r < 0, \\
 [0, 1] & \text{for } r = 0, \\
 r + 1 & \text{for } r > 0.
\end{cases}$$

Note that E is a maximal monotone graph in the sense of Brézis [5].

In (1.1), $\partial\cdot e(t)$ means the material derivative of e (which we shall also write as \dot{e}), and $\nabla_{\Omega(t)}$ and $\Delta_{\Omega(t)}$ are, respectively, the surface gradient and Laplace–Beltrami
operators on $Ω(t)$. The novelty of this work is that the Stefan problem itself is formulated on a moving hypersurface and our chosen method to treat this problem, which we believe is naturally suited to equations on moving domains, requires the use of some new function spaces and results that we shall introduce, building upon the spaces and concepts presented in [6,7]. There is, as alluded to above, a rich literature associated to Stefan-type problems [8–13]. We will show that arguments similar to those used in the standard setting are also amenable to our problem on a moving hypersurface, thanks in part to the function spaces we decide to use. Let us remark that the techniques and functional analysis we develop here can be directly applied to study many other nonlinear PDE problems posed on moving domains.

Let us work out a possible pointwise formulation of (1.1). Start by supposing $Ω(t) = Ω_1(t) ∪ Ω_2(t) ∪ Γ(t)$, where $Ω_1(t)$ and $Ω_2(t)$ divide $Ω(t)$ into a liquid and a solid phase (respectively) with an \textit{a priori} unknown interface $Γ(t)$. The quantity of interest is the temperature $u(t) : Ω(t) → \mathbb{R}$, which we suppose satisfies

\[
\begin{align*}
 u(t) > 0 & \quad \text{in } Ω_1(t), \\
 u(t) = 0 & \quad \text{in } Γ(t), \\
 u(t) < 0 & \quad \text{in } Ω_2(t),
\end{align*}
\]

and thus $u = 0$ is the critical temperature where the change of phase occurs. Define

\[
Q_l = \bigcup_{t \in (0,T)} Ω_l(t) \times \{t\} \quad \text{and} \quad S = \bigcup_{t \in (0,T)} Γ(t) \times \{t\},
\]

and Q_s similarly. Given f and u_0, we formally elucidate in remark 2.12 the relationship between (1.1) and the following model describing the temperature u:

\[
\begin{aligned}
 \partial_t u - ΔΩ u + (u + 1)∇Ω \cdot w &= f & \quad \text{in } Q_l, \\
 \partial_t u - ΔΩ u + u∇Ω \cdot w &= f & \quad \text{in } Q_s, \\
 - (∇Ω u_l - ∇Ω u_s) \cdot μ &= V & \quad \text{on } S, \\
 u &= 0 & \quad \text{on } S, \\
 u(0) &= u_0 & \quad \text{on } Ω(0),
\end{aligned}
\]

(1.2)

where u_s denotes the trace of the restriction $u|_{Ω_2}$ to the interface $Γ$ (likewise with u_l), $V(t)$ is the conormal velocity of $Γ(t)$ and $μ(t)$ is the unit conormal vector pointing into $Ω_1(t)$ (this vector is normal to $Ω(t)$ and tangential to $Ω(t)$).

We now introduce some notions of a weak solution, similar to [10]. The function spaces L^p_X below will be made precise in §2 but for now can be thought of as generalizations of Bochner spaces $L^p(0, T; X_0)$, where now $u \in L^p_X$ implies $u(t) \in X(t)$ for almost all t (for a suitable family $\{X(t)\}_{t \in [0,T]}$).

Definition 1.1 (Weak solution). Given $f \in L^1_{L^1}$ and $v_0 \in L^1(Ω_0)$, a weak solution of (1.1) is a pair $(u, e) \in L^1_{L^1} × L^1_{L^1}$ such that $e ∈ \mathcal{E}(u)$ and there holds

\[
-\int_0^T \int_{Ω(t)} \dot{e}(t)e(t) - \int_0^T \int_{Ω(t)} u(t)ΔΩ \eta(t) = \int_0^T \int_{Ω(t)} f(t)\eta(t) + \int_Ω v_0\eta(0)
\]

for all $\eta \in W(L^∞ \cap H^2, L^∞)$ with $ΔΩ \eta \in L^∞_{L^∞}$ and $\eta(T) = 0$.

Definition 1.2 (Bounded weak solution). Given $f \in L^∞_{L^∞}$ and $v_0 \in L^∞(Ω_0)$, a bounded weak solution of (1.1) is a pair $(u, e) \in L^2_{H^1} × L^∞_{L^∞}$ such that (u, e) is a weak solution of (1.1) satisfying

\[
-\int_0^T \int_{Ω(t)} \dot{e}(t)e(t) + \int_0^T \int_{Ω(t)} ∇Ω u(t)∇Ω \eta(t) = \int_0^T \int_{Ω(t)} f(t)\eta(t) + \int_Ω v_0\eta(0)
\]

(1.3)

for all $\eta \in W(H^1, L^2)$ with $\eta(T) = 0$.

We prove the following results.

Theorem 1.3 (Existence of bounded weak solutions). If \(f \in L^{\infty}_X, \ e_0 \in L^{\infty}(\Omega_0) \) and \(|\Omega| := \sup_{s \in [0, T]} |\Omega(s)| < \infty \), then there exists a bounded weak solution to (1.1).

Theorem 1.4 (Uniqueness and continuous dependence of bounded weak solutions). If for \(i = 1, 2 \), \((u^i, e^i)\) are two bounded weak solutions of (1.1) with data \((f^i, e^i_0) \in L^{\infty}_X \times L^{\infty}(\Omega_0) \), then

\[
\| e^1(t) - e^2(t) \|_{L^1(\Omega(t))} \leq \int_0^T \| f^1(\tau) - f^2(\tau) \|_{L^1(\Omega(\tau))} + \| e^1_0 - e^2_0 \|_{L^1(\Omega_0)}
\]

for almost all \(t \).

Theorem 1.5 (Well posedness of weak solutions). If \(f \in L^1_{L^1}, \ e_0 \in L^1(\Omega_0) \) and \(|\Omega| := \sup_{s \in [0, T]} |\Omega(s)| < \infty \), then there exists a unique weak solution to (1.1). Furthermore, if for \(i = 1, 2 \), \((u^i, e^i) \in L^1_{L^1} \times L^1_{L^1} \) are two weak solutions of (1.1) with data \((f^i, e^i_0) \in L^1_{L^1} \times L^1(\Omega_0) \), then

\[
\| e^1 - e^2 \|_{L^1_{L^1}} \leq C_T(\| f^1 - f^2 \|_{L^1_{L^1}} + \| e^1_0 - e^2_0 \|_{L^1(\Omega_0)}).
\]

Below, we shall use the notation \(\hookrightarrow \) and \(\overset{c}{\hookrightarrow} \) to denote (respectively) a continuous embedding and a compact embedding. We will at times refer to the electronic supplementary material where more explanation can be found for the interested reader.

2. Preliminaries

(a) Abstract evolving function spaces

In [6], we generalized some concepts from [14] and defined the Hilbert space \(L^2_{H} \) given a sufficiently smooth parametrized family of Hilbert spaces \(\{ H(t) \}_{t \in [0, T]} \). We need a generalization of this theory to Banach spaces.

For each \(t \in [0, T] \), let \(X(t) \) be a real Banach space with \(X_0 := X(0) \). We informally identify the family \(\{ X(t) \}_{t \in [0, T]} \) with the symbol \(X \). Let there be a linear homeomorphism \(\phi_t : X_0 \to X(t) \) for each \(t \in [0, T] \) (with the inverse \(\phi_{-t} : X(t) \to X_0 \) such that \(\phi_0 \) is the identity. We assume that there exists a constant \(C_X \) independent of \(t \in [0, T] \) such that

\[
\| \phi_t u \|_{X(t)} \leq C_X \| u \|_{X_0} \quad \forall \ u \in X_0
\]

and

\[
\| \phi_{-t} u \|_{X_0} \leq C_X \| u \|_{X(t)} \quad \forall \ u \in X(t).
\]

We assume for all \(u \in X_0 \) that the map \(t \mapsto \| \phi_t u \|_{X(t)} \) is measurable.

Definition 2.1. Define the Banach spaces

\[
L^p_X = \left\{ u : [0, T] \to \bigcup_{t \in [0, T]} X(t) \times \{ t \}, \ t \mapsto (\hat{u}(t), t) \mid \phi_{-t}(\hat{u}(\cdot)) \in L^p([0, T]; X_0) \right\}
\]

for \(p \in [1, \infty) \)

\[
L^{\infty}_X = \left\{ u \in L^2_X \mid \text{ess sup}_{t \in [0, T]} \| u(t) \|_{X(t)} < \infty \right\}
\]

edowed with the norm

\[
\| u \|_{L^p_X} = \begin{cases} \left(\int_0^T \| u(t) \|_{X(t)}^p \right)^{1/p} & \text{for } p \in [1, \infty), \\ \text{ess sup} \| u(t) \|_{X(t)} & \text{for } p = \infty. \end{cases}
\]

Note that we made an abuse of notation after the definition of the first space and identified \(u(t) = (\hat{u}(t), t) \) with \(\hat{u}(t) \). That (2.2) defines a norm is easy to see once one checks that the integrals are well defined (the case \(p = \infty \) is easy), which can be shown by a straightforward adaptation
of the proof of theorem 2.8 in [6] for the case when each $X(t)$ is separable (see also electronic supplementary material, S1) and the proof of lemma 3.5 in [14] for the non-separable case. The fact that L^p_X is a Banach space follows from lemma 2.3 below.

Important notation 2.2. Given a function $u \in L^p_X$, the notation \tilde{u} will be used to mean the pullback $\tilde{u}(\cdot) := \phi(\cdot)u(\cdot) \in L^p(0, T; X_0)$, and vice versa.

Lemma 2.3. The spaces $L^p(0, T; X_0)$ and L^p_X are isomorphic via $\phi(\cdot)$ with an equivalence of norms:

$$\frac{1}{C_X} \|u\|_{L^p_X} \leq \|\phi(\cdot)u(\cdot)\|_{L^p(0, T; X_0)} \leq C_X \|u\|_{L^p_X}$$

for all $u \in L^p_X$.

Proof. We show the case $p = \infty$ here; an adaptation of the $p = 2$ case done in [6] easily proves the lemma for $p \in [1, \infty)$ (see also electronic supplementary material, S2). Let $u \in L^\infty_X$. Measurability of \tilde{u} follows as $u \in L^2_X$. Now, by definition, we have that for all $t \in [0, T] \setminus N$, $\|u(t)\|_{X(t)} \leq A$, where N is a null set and $A = \|u\|_{L^\infty_X}$. This means that for all $t \in [0, T] \setminus N$, $C_X^{-1} \|\tilde{u}(t)\|_{X_0} \leq \|u(t)\|_{X(t)} \leq A$ by the assumption (2.1), i.e.

$$\|\tilde{u}\|_{L^\infty(0, T; X_0)} = \sup_{t\in[0,T]} \|\tilde{u}(t)\|_{X_0} \leq C_X A = C_X \|u\|_{L^\infty_X},$$

so $\tilde{u} \in L^\infty(0, T; X_0)$. Similarly, we conclude that if $\tilde{u} \in L^\infty(0, T; X_0)$, then $u \in L^\infty_X$. \blacksquare

Remark 2.4. The dual operator $\phi^*_{\cdot t}: X_0^* \rightarrow X^* (t)$ is also a linear homeomorphism with $\|\phi^*_{\cdot t}\| = \|\phi_{\cdot t}\| = \|\phi_{\cdot t}\|^{-1} = \phi^*_{\cdot t}$ [15, theorem 4.5-2 and §4.5], and if X_0 is separable, $t \mapsto \|\phi^*_{\cdot t}f\|_{X^*(t)}$ is measurable for $f \in X_0^*$; thus, in the separable setting, the dual operator also satisfies the same boundedness properties as $\phi_{\cdot t}$. This means that the spaces L^p_X are also well-defined Banach spaces given separable $\{X(t)\}_{t \in [0, T]}$ (the map $\phi^*_{\cdot t}$ plays the same role as $\phi_{\cdot t}$ did for the spaces L^p_X).

The following subspaces will be of use later:

$$C^k_X = \{ \xi \in L^p_X \mid \phi_{\cdot t}\xi(\cdot) \in C^k([0, T]; X_0) \} \quad \text{for} \; k \in \{0, 1, \ldots\}$$

and

$$D_X = \{ \eta \in L^p_X \mid \phi_{\cdot t}\eta(\cdot) \in D((0, T); X_0) \}.$$

(i) **Dual spaces**

In this subsection, we assume that $\{X(t)\}_{t \in [0, T]}$ is reflexive. In order to retrieve weakly convergent subsequences from sequences that are bounded in L^p_X, we need L^p_X to be reflexive. This leads us to consider a characterization of the dual spaces. We let $p \in [1, \infty)$ and (p, q) be a conjugate pair in this section.

Theorem 2.5. The space $(L^p_X)^*$ is isometrically isomorphic to $L^q_{X^*}$, and hence we may identify $(L^p_X)^* \equiv L^q_{X^*}$ and the duality pairing of $f \in L^q_{X^*}$ with $u \in L^p_X$ is given by

$$\langle f, u \rangle_{L^q_{X^*}, L^p_X} = \int_0^T \langle f(t), u(t) \rangle_{X^*(t), X(t)}.$$

To prove this theorem, although we can exploit the fact that the pullback is in a Bochner space, showing that the natural duality map is isometric is not so straightforward because $\phi_{\cdot t}$ is not assumed to be an isometry. In fact, we have to go back to the foundations and emulate the proof for the dual space identification for Bochner spaces [16, §IV].

Lemma 2.6. For every $g \in L^q_{X^*}$, the expression

$$l(f) = \int_0^T \langle g(t), f(t) \rangle_{X^*(t), X(t)} \quad \text{for all} \; f \in L^p_X$$

(2.3)

defines a functional $l \in (L^p_X)^*$ such that $\|l\| = \|g\|_{L^q_{X^*}}$.
Proof. Let \(g \in L_X^q \), and define \(l: L^p_X \to \mathbb{R} \) by (2.3); the integral is well defined by similar reasoning as before (see lemma 2.13 in [6] and the electronic supplementary material, S3). By Hölder’s inequality, we have \(\|l(f)\| \leq \|g\|_{L^q_X} \|f\|_{L^p_X} \), so \(l \in (L^p_X)^* \) and \(\|l\| \leq \|g\|_{L^q_X} \). We now show the reverse inequality. First suppose \(g \) has the form \(g(t) = \sum x_{i,t} \chi_{E_i}(t) \), where the \(x_{i,t} \in X^s(t) \) and the \(E_i \) are measurable, pairwise disjoint and partition \([0, T]\). It is clear that \(\|g(t)\|_{X^s(0)} = \sum \|x_{i,t}\|_{X^s(0)} \). Let \(h(t) = \|g(t)\|_{X^s(0)}^{2/p} \|g\|_{L^q_X}^{q/p} \) which satisfies \(\|h\|_{L^p_0(0,T)} = 1 \) and \(\int_0^T \|g(t)\|_{X^s(0)} h(t) = \|g\|_{L^q_X}^4 \), hence for any \(\epsilon > 0 \) we have

\[
\int_0^T \|g(t)\|_{X^s(0)} h(t) \geq \|g\|_{L^q_X}^4 - \frac{\epsilon}{2}.
\]

(2.4)

Now choose \(x_{i,t} \in X(t) \), \(x_{i,t} \|_{X(t)} = 1 \) (see electronic supplementary material, S4) such that

\[
\|x_{i,t}\|_{X^s(0)} \leq \frac{\epsilon}{2\|h\|_{L^p_0(0,T)}}.
\]

(2.5)

Define \(f \in L^p_X \) by \(f(t) = \sum x_{i,t} \chi_{E_i}(t) \) and note that \(\|f\|_{L^p_0} = \|h\|_{L^p_0(0,T)} \). We obtain using (2.5) and (2.4) that \(l(f) \geq \|g\|_{L^q_X}^2 - \epsilon \). This proves that \(\|l\| = \|g\|_{L^q_X} \) whenever \(g(t) = \sum x_{i,t} \chi_{E_i}(t) \) is of the stated form. Now suppose \(g \in L^q_X \), is arbitrary. Then there exist \(\tilde{g}_n(t) = \sum \tilde{g}_{i,n} \chi_{E_i}(t) \) with \(\tilde{g}_{i,n} \in \mathbb{X}_n \) such that \(\tilde{g}_n \to \tilde{g} \) in \(L^q(0,T,\mathbb{X}_n) \) and so the sequence \(g_n(t) := \phi_{t,n} \tilde{g}_n(t) = \sum \phi_{t,n,i} \tilde{g}_{i,n} \chi_{E_i}(t) \) satisfies \(g_n \to g \) in \(L^q_X \). Because the \(\phi_{t,n,i} \in X^s(t) \), we know by our efforts above that \(l_{n}: L^p_X \to \mathbb{R} \), defined by \(l_{n}(f) = \int_0^T \langle g_n(t), f(t) \rangle_{X^s(0),X(0)} \) has norm \(\|l_n\| = \|g_n\|_{L^q_X} \). We also have

\[
\|l_n - l\| \leq \|g_n - g\|_{L^q_X} \to 0,
\]

which implies \(\lim_{n \to \infty} \|l_n\| = \|l\| \) and also \(\lim_{n \to \infty} \|l_n\| = \lim_{n \to \infty} \|g_n\|_{L^q_X} = \|g\|_{L^q_X} \). \(\Box \)

We have shown that \(J: L^p_X \to (L^p_X)^* \) defined by \(J(g) := l(\cdot) = \int_0^T \langle g(t), (\cdot)(t) \rangle_{X^s(0),X(0)} \) is isometric: \(\|J(g)\|_{(L^p_X)^*} = \|l\| = \|g\|_{L^q_X} \). We now show that \(J \) is onto. Given \(l \in (L^p_X)^* \), define \(\tilde{L}: L^p(0,T;\mathbb{X}_n) \to \mathbb{R} \) by \(\tilde{L}(\tilde{v}) = l(\phi(t)\tilde{v}(t)) = l(v) \) for all \(v \in L^p(0,T;\mathbb{X}_0) \). It is obvious that \(\tilde{L} \in L^p(0,T;\mathbb{X}_0)^* \), and by the dual space identification for Bochner spaces, there exists an \(\tilde{L}^*: L^q(0,T;\mathbb{X}_n)^* \) such that

\[
\langle l, v \rangle_{(L^p_X)^*,L^p_X} = \langle \tilde{L}, \tilde{v} \rangle_{L^p(0,T;\mathbb{X}_n)^*,L^p(0,T;\mathbb{X}_n)} = \int_0^T \langle \phi_{t,n} \tilde{L}^*(t), v(t) \rangle_{X^s(0),X(0)} dt,
\]

so \(J(\phi_{t,n} \tilde{L}^*(t)) = l \), where \(\phi_{t,n} \tilde{L}^*(t) \in L^q_X \). Hence \(J \) is onto, and we have proved theorem 2.5.

(b) Function spaces on evolving surfaces

We now make precise the assumptions on the evolving surface \(\Omega(t) \) our Stefan problem is posed on and we discuss function spaces in the context of the previous subsections. For each \(t \in [0, T] \), let \(\Omega(t) \subseteq \mathbb{R}^{n+1} \) be an orientable compact (i.e. no boundary) \(n \)-dimensional hypersurface of class \(C^3 \), and assume the existence of a flow \(\Phi(t): [0, T] \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \) such that for all \(t \in [0, T] \), with \(\Omega_0 := \Omega(0) \), the map \(\Phi(t, \cdot): \Omega_0 \to \Omega(t) \) is a \(C^3 \)-diffeomorphism that satisfies \(d/dt \Phi^0(t) = \mathbf{w}(t, \Phi^0(t)) \) and \(\Phi^0(0) = Id(-) \) for a given \(C^2 \) velocity field \(\mathbf{w}: [0, T] \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \), which we assume satisfies the uniform bound \(|\nabla \Omega(t) \cdot \mathbf{w}(t)| \leq C \) for all \(t \in [0, T] \). A \(C^2 \) normal vector field on the hypersurfaces is denoted by \(\nu: [0, T] \times \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \). It follows that the Jacobian \(J^0 := \det \Phi^0 \) is \(C^2 \) and is uniformly bounded away from zero and infinity.

For \(u: \Omega_0 \to \mathbb{R} \) and \(v: \Omega(t) \to \mathbb{R} \), define the pushforward \(\Phi^t u = u \circ \Phi^t \) and pullback \(\Phi^t \nu = \nu \circ \Phi^t \), where \(\Phi^t := (\Phi^0)^{-1} \). We showed in [7] that \(\Phi^t_1: L^2(\Omega_0) \to L^2(\Omega(t)) \) and \(\Phi^t_2: H^{1/2}(\Omega_0) \to H^{1/2}(\Omega(t)) \) are linear homeomorphisms (with uniform bounds) and (thus) with \(L^2 \equiv \{ L^2(\Omega(t)) \}_{t \in [0,T]} \), \(H^{1/2} \equiv \{ H^{1/2}(\Omega(t)) \}_{t \in [0,T]} \) and \(H^{1} \equiv \{ H^{1}(\Omega(t)) \}_{t \in [0,T]} \) the spaces \(L^2_{1/2}, L^2_1 \) and \(H^{1}_{1/2} \) are well defined (see [7,17] for an overview of Lebesgue and Sobolev spaces on hypersurfaces) and we let \(L^2_1 \subseteq L^2_{1/2} \subseteq L^2_{H^{-1}} \) be a Gelfand triple.
A function \(u \in \mathcal{C}^1_2 \) has a strong material derivative defined by \(\hat{u}(t) = \phi(d/dt(\phi_{-1}u(t))) \). Given a function \(u \in L^2_{1_H} \), we say that it has a weak material derivative \(g \in L^2_{1_{H^{-1}}} \) if

\[
(u, \eta)_{1^2_2} = -(g, \eta)_{1^2_2} - (u, \eta \nabla \Omega \cdot w)_{1^2_2} \quad \forall \, \eta \in \mathcal{D}_{1_{H^1}}
\]

holds, and we write \(\hat{u} \) or \(\partial^* u \) instead of \(g \). Define the Hilbert spaces (see [6,7] for more details)

\[
\mathcal{W}(H^1(\Omega_0), H^{-1}(\Omega_0)) = \{ u \in L^2(0, T; H^1(\Omega_0)) \mid u' \in L^2(0, T; H^{-1}(\Omega_0)) \}
\]

\[
W(H^1, H^{-1}) = \{ u \in L^2_{1_H} \mid \hat{u} \in L^2_{1_{H^{-1}}} \}
\]

equipped with the natural inner products. For subspaces \(X \hookrightarrow H^1 \) and \(Y \hookrightarrow H^{-1} \), we also define the subset \(W(X, Y) \subset W(H^1, H^{-1}) \) in the natural manner.

Lemma 2.7 (See [6,7]). Let either \(X = W(H^1, H^{-1}) \) and \(X_0 = W(H^1(\Omega_0), H^{-1}(\Omega_0)) \), or \(X = W(H^1, L^2) \) and \(X_0 = W(H^1(\Omega_0), L^2(\Omega_0)) \). For such pairs, the space \(X \) is isomorphic to \(X_0 \) via \(\phi_{-1} \) with an equivalence of norms:

\[
C_1\|\phi_{-1}v(\cdot)\|_{X_0} \leq \|v\|_X \leq C_2\|\phi_{-1}v(\cdot)\|_{X_0}.
\]

We showed in [6,7] that, for \(u, v \in W(H^1, H^{-1}) \), the map \(t \mapsto (u(t), v(t))_{L^2(\Omega(t))} \) is absolutely continuous, and

\[
\frac{d}{dt} \int_{\Omega(t)} u(t)v(t) = \langle \hat{u}(t), v(t) \rangle + \langle v(t), u(t) \rangle + \int_{\Omega(t)} u(t)v(t)\nabla \cdot w(t)
\]

holds for almost all \(t \), where the duality pairing is between \(H^{-1}(\Omega(t)) \) and \(H^1(\Omega(t)) \).

(i) **Some useful results**

In this subsection, \(p \) and \(q \) are not necessarily conjugate. The first part of the following lemma is a particular realization of lemma 2.3. Consult the electronic supplementary material, S5–S7, for more details of the next three results.

Lemma 2.8. For \(p, q \in [1, \infty] \), the spaces \(L^p_{1_{L^1}} \) and \(L^p(0, T; L^2(\Omega_0)) \) are isomorphic via the map \(\phi_{1_L} \) with an equivalence of norms. If \(q = \infty \), the spaces are isometrically isomorphic. The embedding \(L^\infty_{1_{L^1}} \subset L^p_{1_{L^1}} \) is continuous.

Lemma 2.9. The space \(W(H^1, H^{-1}) \) is compactly embedded in \(L^2_{1_{L^2}} \).

Theorem 2.10 (Dominated convergence theorem for \(L^p_{1_{L^1}} \)). Let \(p, q \in [1, \infty) \). Let \(\{ w_n \} \) and \(w \) be functions such that \(\{ \bar{w}_n \} \) and \(\bar{w} \) are measurable (e.g. membership of \(L^1_{1_{L^1}} \) will suffice). If for almost all \(t \in [0, T] \),

\[
w_n(t) \rightarrow w(t) \quad \text{almost everywhere in } \Omega(t)
\]

\[
\exists g \in L^p_1 : |w_n(t)| \leq g(t) \quad \text{almost everywhere in } \Omega(t) \quad \text{and for all } n,
\]

then \(w_n \rightharpoonup w \) in \(L^p_1 \).

Lemma 2.11. If \(u \in W(H^1, H^{-1}) \), then

\[
2 \int_0^T \langle \hat{u}(t), u^+(t) \rangle_{H^{-1}(\Omega(t)), H^1(\Omega(t))} = \int_{\Omega(T)} u^+(T)^2 - \int_{\Omega_0} u^+(0)^2 - \int_0^T \int_{\Omega(t)} u^+(t)^2 \nabla \cdot w. \tag{2.6}
\]

Proof. By density, we can find \(\{ u_n \} \subset W(H^1, L^2) \) with \(u_n \rightarrow u \) in \(W(H^1, H^{-1}) \). It follows that \(\partial^* u_n^+ = \hat{u}_n x_{u_n \geq 0} \in L^2_{1_{L^2}} \) (this is sensible because \(w \in H^1(\Omega) \) implies \(w^+ \in H^1(\Omega) \)) and therefore (2.6) holds for \(u_n \) (see electronic supplementary material, S8). As \(W(H^1, H^{-1}) \hookrightarrow \mathcal{C}^0_{1_{L^2}} \), it follows that \(u_n^+(t) \rightarrow u^+(t) \) in \(L^2(\Omega(t)) \) (for example see [17, theorem 2.8.8] or [19, lemma 1.22]). So we can pass to the limit in the first two terms on the right-hand side.
Now we just need to show that $u_n^+ \to u^+$ in $L^2_{H^1}$. It is easy to show the convergence in $L^2_{H^1}$, so we need only to check the convergence of the gradient. Let $g(r) = \chi_{(r>0)}$. Then, using $g \leq 1$,

$$\left| \nabla u_n^+(t,x) - \nabla u^+(t,x) \right| \leq \left| \nabla u_n(t,x) - \nabla u(t,x) \right| + \left| g(u_n(t,x)) - g(u(t,x)) \right| \left| \nabla u(t,x) \right|.$$

For the second term, let us note that as $u_n \to u$ in $L^2_{H^1}$, for almost all t, $u_n(t,x) \to u(t,x)$ almost everywhere in $\Omega(t)$ for a subsequence (which we have not relabelled). Let us fix t. Then for almost every $x \in \Omega(t)$, it follows that $g(u_n(t,x))\nabla u(t,x) \to g(u(t,x))\nabla u(t,x)$ pointwise (see electronic supplementary material, S9). Because $g \leq 1$, the dominated convergence theorem gives overall $\nabla u_n^+ \to \nabla u^+$ in $L^2_{H^1}$.

(c) Preliminary results

Remark 2.12. It is well known in the standard setting that a mushy region (the interior of the set where the temperature is zero) can arise in the presence of heat sources [1,20]; with no heat sources, the initial data may give rise to mushy regions. We will content ourselves with the following heuristic calculations under the assumption that there is no mushy region.

Let the bounded weak solution of (1.1) (in the sense of definition 1.2) have the additional regularity $u \in W(H^1, L^2)$ and $\Delta u \in L^2_{H^2}$, and suppose that the sets $\Omega(t) = \{u > 0\}$ and $\Omega_s(t) = \{u < 0\}$ divide $\Omega(t)$ with a common interface $\Gamma(t)$, which we assume is a sufficiently smooth n-dimensional hypersurface (of measure zero with respect to the surface measure on $\Omega(t)$). Then the bounded weak solution is also a classical solution in the sense of (1.2). To see this, suppose that (u,e) is a weak solution satisfying the equality in (1.3). The integration by parts formula on each subdomain of Ω implies

$$\int_0^T \int_{\Omega(t)} \nabla u(t) \nabla \eta(t) = - \int_0^T \int_{\Omega(t)} \eta(t) \Delta u(t) + \int_0^T \int_{\Gamma(t)} \eta(t) \nabla u_n(t) - \nabla u(t) \cdot \mu. \quad (2.7)$$

With $e(t)\eta(t)\nabla \cdot \mathbf{w} = \nabla \cdot (e(t)\eta(t)\mathbf{w}) - \mathbf{w} \cdot \nabla e(t)\eta(t))$ and the divergence theorem [17, §2.2],

$$\int_0^T \int_{\Omega_s(t)} e(t)\eta(t)\nabla \cdot \mathbf{w} = \int_0^T \int_{\Gamma(t)} e(t)\eta(t)\mathbf{w} \cdot \mu + \int_0^T \int_{\Omega_s(t)} \mathbf{w} \cdot (e(t)\eta(t)\nabla \cdot \mathbf{w} - \nabla (e(t)\eta(t))).$$

We use this result in the formula for integration by parts over time over Ω_s:

$$\int_0^T \int_{\Omega_s(t)} \dot{\eta}(t)e(t) = \int_0^T \frac{d}{dt} \int_{\Omega_s(t)} e(t)\eta(t) - \int_0^T \int_{\Omega_s(t)} \dot{e}(t)\eta(t) - \int_0^T \int_{\Omega_s(t)} e(t)\eta(t)\mathbf{w} \cdot \mu$$

$$- \int_0^T \int_{\Omega_s(t)} e(t)\eta(t)\mathbf{w} \cdot \nabla (e(t)\eta(t)).$$

A similar expression over Ω_l can also be derived this way, the difference being that the term with μ has the opposite sign. Then, using $\dot{e} = \delta^*_\mathcal{E}(u) = \dot{u}$, $e_s(0) = 0$, and $e_l(0) = 1$, we get

$$\int_0^T \int_{\Omega_l(t)} \dot{e}(t) = \int_0^T \frac{d}{dt} \int_{\Omega_l(t)} e(t)\eta(t) - \int_0^T \int_{\Omega_l(t)} \dot{u}(t)\eta(t) + \int_0^T \int_{\Omega_l(t)} \eta(t)e(t)\nabla \cdot \mathbf{w}$$

$$- \int_0^T \int_{\Omega_l(t)} e(t)\eta(t)\mathbf{w} \cdot \nabla (e(t)\eta(t)). \quad (2.8)$$

Since by the partial integration formula $\int_{\Omega(t)} \mathbf{D}(g) = \int_{\Omega(t)} gHv$, we have (with $g = w_i e(t)\eta(t)$) that the fourth term in the right-hand side of (2.8) is

$$\int_{\Omega(t)} e(t)\eta(t)\mathbf{w} \cdot \nabla H = \sum_i \int_{\Omega(t)} e(t)\eta(t)w_i v_i H = \int_{\Omega(t)} \nabla (e(t)\eta(t)) \cdot \mathbf{w}$$

$$+ \int_{\Omega(t)} \eta(t)e(t)\nabla \cdot \mathbf{w},$$

so the calculation (2.8) becomes

$$\int_0^T \int_{\Omega_l(t)} \dot{e}(t) = \int_0^T \left(\frac{d}{dt} \int_{\Omega_l(t)} e(t)\eta(t) - \int_{\Omega_l(t)} (u(t)\eta(t) + \eta(t)e(t)\nabla \cdot \mathbf{w}) + \int_{\Omega_l(t)} \eta(t)\mathbf{w} \cdot \mu \right). \quad (2.9)$$
Now, taking the weak formulation (1.3) and substituting (2.9) together with the expression for the spatial term (2.7), we get for η with $\eta(T) = \eta(0) = 0$

\[
\int_0^T \int_{\Omega(t)} f(t) \eta(t) = - \int_0^T \int_{\Omega(t)} \dot{\eta}(t) \phi(t) + \int_0^T \int_{\Omega(t)} \nabla \Omega u(t) \nabla \eta(t)
\]

\[
= \int_0^T \int_{\Omega(t)} (\dot{u}(t) + e(t) \nabla \Omega \cdot w - \Delta \Omega u(t)) \eta(t)
\]

\[
+ \int_{\Gamma(t)} \eta(t)((\nabla \Omega u_\delta(t) - \nabla \Omega u_\epsilon(t)) \cdot \mu - (w \cdot \mu))
\]

Taking η to be compactly supported in Q_s, and afterwards taking η compactly supported in Q_1, we recover exactly the first two equations in (1.2). So we may drop the first integral on the left- and the right-hand side. Then with a careful choice of η, we will obtain precisely the interface condition in (1.2).

Lemma 2.13. Given $\xi \in C^1(\Omega_0)$ and $\bar{\alpha} \in C^2([0, T] \times \Omega_0)$ satisfying $0 < \epsilon \leq \alpha \leq \alpha_0$ a.e., there exists a unique solution $\varphi \in W(H^1, L^2)$ with $\Delta \Omega \varphi \in L^2_{t, \Omega_0}$ to

\[
\frac{d}{dt} a_s(t; \eta(t), \eta(t)) = 2a_s(t; \eta(t), \eta(t)) + r(t; \eta(t))
\]

satisfying $||\varphi||_{L^\infty_{t, \Omega_0}} \leq ||\xi||_{L^\infty(\Omega_0)}$ and (cf. [21, ch. V, §9])

\[
\int_0^T \int_{\Omega(t)} (\phi(t))^2 + \alpha |\nabla \varphi|^2 + \int_{\Omega(t)} |\nabla \Omega \varphi|^2 \leq (1 + \alpha_0)(1 + e^{2C\omega(1+\alpha_0)t}) \int_{\Omega_0} |\nabla \Omega \xi|^2. \tag{2.11}
\]

Proof. Define the bilinear form $a(t; \varphi, \eta) = \int_{\Omega(t)} \alpha(x, t) \nabla \varphi \cdot \nabla \eta + \int_{\Omega(t)} \nabla \Omega \alpha(x, t) \nabla \varphi \eta$ which is clearly bounded and coercive on $H^1(\Omega(t))$. Split $a(t; \cdot, \cdot)$ into the forms $a_s(t; \varphi, \eta)$ and $a_0(t; \varphi, \eta) := \int_{\Omega(t)} \nabla \Omega \alpha(x, t) \nabla \varphi$. One sees that $a_s(t; \eta, \eta) \geq 0$ and that both $a_0(t; \cdot, \cdot) : H^1(\Omega(t)) \times L^2(\Omega(t)) \to \mathbb{R}$ and $a_s(t; \cdot, \cdot) : H^1(\Omega(t)) \times H^1(\Omega(t)) \to \mathbb{R}$ are bounded. Also, letting $x^\prime_j := \phi_j x_j^0$, where x_j^0 are the normalized eigenfunctions of $-\Delta \Omega_0$, we have for $\eta \in \mathcal{C}_{H}^1 := \{u | u(t) = \sum_{j=1}^m a_j(t) x_j^\prime, m \in \mathbb{N}, a_j \in AC([0, T]) \}$ and $a_j \in L^2(0, T)$

\[
\frac{d}{dt} a_s(t; \eta(t), \eta(t)) = 2a_s(t; \eta(t), \eta(t)) + r(t; \eta(t))
\]

where r is such that $|r(t; \eta(t))| \leq C ||\eta(t)||^2_{H^1(\Omega(t))}$ (see [17, lemma 2.1]); note that $\bar{\alpha} \in C^1([0, T]; C^1(\Omega_0))$ and thus $a \in C^1$. Hence by [6, theorem 3.13], we have the unique existence of $\varphi \in W(H^1, L^2)$. Rearranging equation (2.10) shows that $\alpha \Delta \Omega \varphi \in L^2_{t, \Omega_0}$. As α is uniformly bounded by positive constants, it follows that $\Delta \Omega \varphi \in L^2_{t, \Omega_0}$.

The L^∞ bound. Let $K := ||\xi||_{L^\infty(\Omega_0)}$. Test the equation with $(\varphi - K)^+$:

\[
\frac{1}{2} \frac{d}{dt} ||(\varphi(t) - K)^+||^2_{L^2(\Omega(t))} + \int_{\Omega(t)} a(t) \nabla \Omega ((\varphi(t) - K)^+) \nabla \varphi(t)
\]

\[
= \frac{1}{2} \int_{\Omega(t)} ((\varphi(t) - K)^+)^2 \nabla \Omega \cdot w - \int_{\Omega(t)} \nabla \Omega a(t) \nabla \varphi(t) (\varphi(t) - K)^+
\]

which becomes, through the use of Young’s inequality with δ,

\[
\frac{1}{2} \frac{d}{dt} ||(\varphi(t) - K)^+||^2_{L^2(\Omega(t))} \leq \left(\frac{C\omega}{2} + ||\nabla \Omega a||_{L^\infty} C\delta \right) ||(\varphi(t) - K)^+||^2_{L^2(\Omega(t))}.
\]

An application of Gronwall’s inequality and noticing $(\varphi(0) - K)^+ = (\xi - ||\xi||_{L^\infty})^+ = 0$ yields $\varphi(t) \leq ||\xi||_{L^\infty(\Omega_0)}$. Repeating this process with $(-\varphi(t) - K)^+$ allows us to conclude.
The inequality (2.11). Multiply equation (2.10) by $\Delta \Omega \varphi$ and integrate: formally,

$$
\int_0^t \int_{\Omega(t)} \alpha |\Delta \Omega \varphi|^2 = - \int_0^t \int_{\Omega(t)} \nabla \varphi \nabla \varphi = \int_0^t \frac{1}{2} \frac{d}{dt} \int_{\Omega(t)} |\nabla \varphi|^2
$$

$$
+ \frac{1}{2} \int_0^t \int_{\Omega(t)} |\nabla \varphi|^2 \Omega \cdot w - \int_0^t \int_{\Omega(t)} D(w) \nabla \varphi \nabla \varphi
$$

$$
\leq \frac{1}{2} \int_{\Omega_0} |\nabla \Omega \xi|^2 - \frac{1}{2} \int_{\Omega(t)} |\nabla \varphi(t)|^2 + C w \int_0^t \int_{\Omega(t)} |\nabla \varphi|^2. \quad (2.12)
$$

See [17, lemma 2.1] or [7] for the definition of the matrix $D(w)$. This calculation is merely formal because we have not shown that $\varphi(t) \in H^1(\Omega(t))$; however, the end result of the calculation is still valid by lemma 2.14. We also have by squaring (2.10), integrating and using (2.12):

$$
\int_0^t \int_{\Omega(t)} (\varphi(t))^2 \leq \alpha_0 \int_0^t \int_{\Omega(t)} \alpha |\Delta \Omega \varphi|^2 \leq \frac{\alpha_0}{2} \int_{\Omega_0} |\nabla \Omega \xi|^2 + \alpha_0 C w \int_0^t \int_{\Omega(t)} |\nabla \varphi|^2.
$$

Adding the last two inequalities then we obtain

$$
\int_0^t \int_{\Omega(t)} (\varphi(t))^2 \leq \frac{1 + \alpha_0}{2} \int_{\Omega_0} |\nabla \Omega \xi|^2 + C_w (1 + \alpha_0) \int_0^t \int_{\Omega(t)} |\nabla \varphi|^2.
$$

Gronwall’s inequality can be used to deal with the last term on the right-hand side.

Lemma 2.14. With $\varphi \in W(H^1, L^2)$ from the previous lemma, the following inequality holds:

$$
\int_0^t \int_{\Omega(t)} \alpha |\Delta \Omega \varphi|^2 \leq \frac{1}{2} \int_{\Omega_0} |\nabla \Omega \xi|^2 - \frac{1}{2} \int_{\Omega(t)} |\nabla \varphi(t)|^2 + C w \int_0^t \int_{\Omega(t)} |\nabla \varphi|^2. \quad (2.13)
$$

Proof. Let $C_H^\infty := \{ \eta | \phi_{1,1} \eta(t) \in C^\infty([0, T]; H^2(\Omega_0)) \}$. We start with a few preliminary results. Let us show $C_H^\infty \subset W(H^2, H^1)$. Take $\eta \in C_H^\infty$ so that $\eta \in C^\infty([0, T]; H^2(\Omega_0)) \subset W(H^2, H^1)$. By smoothness of $\phi_0(t)$, it follows that $\eta = \int_0^t \eta \in L^2(0, T; H^2(\Omega_0)) \subset W(H^2, H^1)$. Hence, $\eta \in C^\infty([0, T]; H^2(\Omega_0)) \subset L^2(0, T; H^1(\Omega_0))$. So $\eta \in W(H^2, H^1)$.

Let us also prove that $C_H^\infty \subset W(H^2, L^2)$ is dense. Let $w \in W(H^2, L^2)$; then $\tilde{w} \in W(H^2, L^2)$ since $\tilde{w} \in L^2(0, T; H^2(\Omega_0))$ by smoothness of $\phi_0(t)$ and since $\tilde{w} = \phi_{1,1} \tilde{w} \in L^2(0, T; L^2(\Omega_0))$ (because $\tilde{w} \in L^2_0$). By [22, lemma II.5.10], there exists $\tilde{w}_n \in C^\infty([0, T]; H^2(\Omega_0))$ with $\tilde{w}_n \to \tilde{w}$ in $W(H^2, L^2)$. Then, $\tilde{w}_n := \phi_{1,1} \tilde{w}_n \in C_H^\infty$ (by definition) and

$$
\| \tilde{w}_n - \tilde{w} \|_{W(H^2, L^2)} \leq C(\| \tilde{w}_n - \tilde{w} \|_{L^2(0, T; H^2(\Omega_0))}) + \| \tilde{w}_n - \tilde{w} \|_{L^2(0, T; L^2(\Omega_0))}) \to 0,
$$

where we used the smoothness of $\phi_0(t)$ and the reasoning behind assumption 2.37 of [6] (see also [6, theorem 2.33]).

Given $\varphi \in W(H^2, L^2)$, by the density result, there exists $\varphi_n \in C_H^\infty \subset W(H^2, H^1)$ such that $\varphi_n \to \varphi$ in $W(H^2, L^2)$ with φ_n satisfying (2.13):

$$
\int_0^t \int_{\Omega(t)} \alpha |\Delta \Omega \varphi_n|^2 \leq \frac{1}{2} \int_{\Omega_0} |\nabla \varphi_n(0)|^2 - \frac{1}{2} \int_{\Omega(t)} |\nabla \varphi_n(t)|^2 + C w \int_0^t \int_{\Omega(t)} |\nabla \varphi_n|^2. \quad (2.14)
$$

We know that $\varphi_n \to \varphi$ in $W(H^2, L^2)$ (this is just how we construct the sequence φ_n; see above), and $W(H^2, L^2) \hookrightarrow C^0([0, T]; H^1(\Omega_0))$ [22, lemma II.5.14] implies $\varphi_n(t) \to \varphi(t)$ in $H^1(\Omega(t))$. Now we can pass to the limit in every term in (2.14).
3. Well posedness

We can approximate \(E\) by \(C^\infty\) bi-Lipschitz functions \(E_\epsilon\) such that (e.g. [12,13])

\[
E_\epsilon \to E \text{ uniformly in the compact subsets of } \mathbb{R}\setminus\{0\},
\]

\[
E_\epsilon^{-1} \to E^{-1} \text{ uniformly in the compact subsets of } \mathbb{R},
\]

\[
E_\epsilon(0) = 0 \quad \text{and} \quad E_\epsilon = E \text{ on } (-\infty, 0) \cup (\epsilon, \infty),
\]

\[
1 \leq E_\epsilon'(r) \leq 1 + L_\epsilon \quad \text{and} \quad (1 + L_\epsilon)^{-1} \leq (E^{-1}_\epsilon(r))' \leq 1 \quad \text{for all } r \in \mathbb{R}
\]

(where \(L_\epsilon = O(1/\epsilon)\) is the Lipschitz constant of the approximation to the Heaviside function). We write \(\mathcal{U} := E^{-1}\) and \(\mathcal{U}_\epsilon := E_\epsilon^{-1}\). In order to prove theorem 1.3, that of the well posedness of \(L^\infty\) weak solutions given bounded data, we consider the following approximation of (1.1).

Definition 3.1. Find for each \(\epsilon > 0\) a function \(e_\epsilon \in W(H^1, H^{-1})\) such that

\[
\partial^* e_\epsilon - \Delta_D (\mathcal{U}_\epsilon e_\epsilon) + e_\epsilon \nabla_D \cdot w = f \quad \text{in } L^2_{H^{-1}}
\]

and

\[
e_\epsilon(0) = e_0.
\]

Theorem 3.2. Given \(f \in L^2_{H^{-1}}\) and \(e_0 \in L^2(\Omega_0)\), the problem \((P_\epsilon)\) has a weak solution \(e_\epsilon \in W(H^1, H^{-1})\).

Proof. Using the chain rule on the nonlinear term leads us to consider for fixed \(w \in W(H^1, H^{-1})\)

\[
\begin{align*}
\langle \partial^*(Sw), \eta \rangle_{H^{-1},H^1} + (\mathcal{U}_\epsilon(w) \nabla_S (Sw), \nabla \eta)_{L^2} \\
+ (Sw, \eta \nabla \cdot w)_{L^2} = \langle f, \eta \rangle_{L^2_{H^{-1}},L^2_{H^1}}
\end{align*}
\]

and

\[
Sw(0) = e_0.
\]

If \(S\) denotes the solution map of \((P(w))\) that takes \(w \mapsto Sw\), then we seek a fixed point of \(S\). First, note that, since the bilinear form involving the surface gradients is bounded and coercive, the solution \(Sw \in W(H^1, H^{-1})\) of \((P(w))\) does indeed exist by [6, theorem 3.6], and, moreover, it satisfies the estimate

\[
\|Sw\|_{W(H^1, H^{-1})} \leq C(\|f\|_{L^2_{H^{-1}}}, \|u_0\|_{L^2(\Omega_0)}) =: C_s,
\]

where the constant \(C\) does not depend on \(w\) because \(\mathcal{U}_\epsilon(w(t))\) is uniformly bounded from below (in \(w\)). Then the set \(E := \{w \in W(H^1, H^{-1}) | w(0) = e_0, \|w\|_{W(H^1, H^{-1})} \leq C_s\}\), which is a closed, convex and bounded subset of \(X := W(H^1, H^{-1})\), is such that \(S(E) \subset E\) by (3.1). We now show that \(S\) is weakly continuous. Let \(w_n \rightharpoonup w\) in \(W(H^1, H^{-1})\) with \(w_n \in E\). From the estimate (3.1), we know that \(Sw_n\) is bounded in \(W(H^1, H^{-1})\), so for a subsequence

\[
Sw_n \to \chi \quad \text{in } W(H^1, H^{-1})
\]

and

\[
Sw_n \to \chi \quad \text{in } L^2_{H^1}
\]

by the compact embedding of lemma 2.9. Now we show that \(\chi = Sw\). Due to \(W(H^1, H^{-1}) \hookrightarrow C^0_{L^2}\), \(Sw_n \to \chi \in C^0_{L^2}\). This implies \(Sw_n(0) \to \chi(0)\) in \(L^2(\Omega_0)\) (to see this consider for arbitrary \(f \in L^2(\Omega_0)\) the functional \(G \in (C^0_{L^2})^*\) defined by \(G(u_n) = \int_{\Omega_0} fu_n(0)\)). As \(Sw_n(0) = e_0\), it follows that

\[
\chi(0) = e_0.
\]

(3.2)

On the other hand, as \(w_n\) are weakly convergent in \(W^1(H^1, H^{-1})\), they are bounded in the same space. Now, \(W(H^1, H^{-1}) \hookrightarrow L^2_{L^2}\), hence \(w_n \to w\) in \(L^2_{L^2}\). It follows that the subsequence \(w_{n_k} \to w\) in \(L^2_{L^2}\) too, and so there is a subsequence such that, for almost every \(t \in [0, T]\), \(w_{n_k}(t) \to w(t)\) a.e. in \(\Omega(t)\). By continuity, for a.a. \(t\), \(\mathcal{U}_\epsilon(w_{n_k}(t))\nabla_S \eta(t) \to \mathcal{U}_\epsilon(w(t))\nabla_S \eta(t)\) a.e., and also we have \(\|\mathcal{U}_\epsilon(w_{n_k})\nabla_S \eta\| \leq \|\nabla_S \eta\|\) with the right-hand side in \(L^2_{L^2}\). Thus, we can use the dominated
convergence theorem (theorem 2.10), which tells us that \(U'_e(w_{n_k}) \nabla \Omega \eta \rightarrow U'_e(w) \nabla \Omega \eta \) in \(L^2_t \). Now we pass to the limit in the equation \((P(w))\) with \(w \) replaced by \(w_{n_k} \) to get

\[
\int_0^T (\partial^* \chi(t), \eta(t)) + \int_{\Omega(t)} U'_e(w(t)) \nabla \chi(t) \nabla \Omega \eta(t) + \int_{\Omega(t)} \chi(t) \eta(t) \nabla \Omega \cdot w = \int_0^T (f(t), \eta(t)),
\]

which, along with (3.2), shows that \(\chi = S(w) \), so \(\hat{S}w_{n_k} \rightarrow S(w) \). However, we have to show that the whole sequence converges, not just a subsequence. Let \(x_n = S(w_n) \) and equip the space \(X = W(H^1, H^{-1}) \) with the weak topology. Let \(x_{n_m} = S(w_{n_m}) \) be a subsequence. By the bound of \(S \), it follows that \(x_{n_m} \) is bounded, hence it has a subsequence such that

\[
x_{n_m} \rightharpoonup x^* \quad \text{in} \quad X \quad \text{and} \quad x_{n_m} \rightarrow x^* \quad \text{in} \quad L^2_t.
\]

By similar reasoning as before, we identify \(x^* = S(w) \), and theorem 3.3 tells us that indeed \(x_n = S(w_n) \rightarrow S(w) \). Then by the Schauder–Tikhonov fixed point theorem [23, theorem 1.4, p. 118], \(S \) has a fixed point.

Theorem 3.3. Let \(x_n \) be a sequence in a topological space \(X \) such that every subsequence \(x_{n_k} \) has a subsequence \(x_{n_{k_l}} \) converging to \(x \in X \). Then the full sequence \(x_n \) converges to \(x \).

(a) Uniform estimates

We set \(u(e) = U_e(e) \). Below we denote by \(M \) a constant such that \(\|u_0\|_{L^\infty(\Omega_0)} \leq M \).

Lemma 3.4. The following bound holds independent of \(e \):

\[
\|u_e\|_{L^\infty_{t_0}(\Omega_0)} + \|\mathcal{E}_e(u_e)\|_{L^\infty_{t_0}(\Omega_0)} \leq 2e^\alpha \|\nabla \chi\|_{L^\infty_{t_0}} + 1 + 1.
\]

Proof. We substitute \(w(t) = e^{-\lambda_0} e(t) \) in \((P_e)\) and use \(\partial^*(e^{\lambda_0} w(t)) = \lambda e^{\lambda_0} w(t) + e^{\lambda_0} \dot{w}(t) \) to get

\[
\dot{w}(t) - e^{-\lambda_0} \Delta_{\Omega} (U'_e(e^{\lambda_0} w(t))) + \lambda w(t) + w(t) \nabla \Omega \cdot w = e^{-\lambda_0} f(t).
\]

Let \(\alpha = \|f\|_{L^\infty_{t_0}} \) and \(\beta = \|e_0\|_{L^\infty(\Omega_0)} \) and define \(v(t) = \alpha t + \beta \). Note that \(\dot{v}(t) = \alpha \) and \(v(0) = \beta \). Subtracting \(\dot{v}(t) \) from the above and testing with \((w(t) - v(t))^+\), we get

\[
\langle \dot{w}(t) - \dot{v}(t), (w(t) - v(t))^+ \rangle_{H^{-1}(\Omega(t)), H^1(\Omega(t))} + \int_{\Omega(t)} e^{-\lambda_0} \nabla \Omega (U'_e(e^{\lambda_0} w(t))) \nabla \Omega (w(t) - v(t))^+ + \int_{\Omega(t)} (\lambda + \nabla \Omega \cdot w) w(t)(w(t) - v(t))^+
\]

\[
= \int_{\Omega(t)} (e^{-\lambda_0} f(t) - \alpha)(w(t) - v(t))^+. \tag{3.3}
\]

Note that \(e^{-\lambda_0} \nabla \Omega (U'_e(e^{\lambda_0} w(t))) \nabla \Omega (w(t) - v(t))^+ = U'_e(e^{\lambda_0} w(t)) \nabla \Omega (w(t) - v(t))^+ \) because \(\nabla \Omega v(t) = 0 \). Let \(\lambda := \|\nabla \Omega \cdot w\|_{L^\infty_{t_0}} \), then the last term on the left-hand side of (3.3) is non-negative because, if \(w > \alpha, \lambda > 0 \) since \(v \geq 0 \). So we can throw away that and the gradient term to find

\[
\langle \dot{w}(t) - \dot{v}(t), (w(t) - v(t))^+ \rangle_{H^{-1}(\Omega(t)), H^1(\Omega(t))} \leq \int_{\Omega(t)} (e^{-\lambda_0} f(t) - \alpha)(w(t) - v(t))^+.
\]

Integrating this and using lemma 2.11, we find

\[
\frac{1}{2} \int_{\Omega(t)} (w(t) - v(t))^+)^2 \leq \frac{1}{2} \|\nabla \Omega \cdot w\| \int_0^T \langle \dot{w}(t) - \dot{v}(t), (w(t) - v(t))^+ \rangle^2
\]

as \(e^{-\lambda_0} f(t) - \alpha = e^{-\lambda_0} f(t) - \|f\|_{L^\infty(\Omega(t))} \leq 0 \) and \(w(0) - v(0) = e_0 - \|e_0\|_{L^\infty(\Omega_0)} \leq 0 \). The use of Gronwall’s inequality gives \(\int w(t) \leq T\|f\|_{L^\infty_{t_0}} + (1 + M) \) almost everywhere on \(\Omega(t) \). So we have shown that for all \(t \in [0, T] \backslash N_1, w(t, x) \leq C \) for all \(x \in \Omega(t) \backslash M_1^1 \), where \(\mu(N_1) = \mu(M_1^1) = 0 \). A similar argument yields for all \(t \in [0, T] \backslash N_2, w(t, x) \geq -C \) for all \(x \in \Omega(t) \backslash M_2^1 \), where \(\mu(N_2) = \mu(M_2^1) = 0 \). Taking these statements together tells us that for all \(t \in [0, T] \backslash N, w(t, x) \leq C \) on \(\Omega(t) \backslash M_1^2 \), where \(N = N_1 \cup N_2 \) and \(M^1 = M_1^1 \cup M_1^2 \) have measure zero. This gives \(\|w\|_{L^\infty_{t_0}} \leq T\|f\|_{L^\infty_{t_0}} + (1 + M) \).
From this and $u_ε = \mathcal{U}_ε (e^{λε}w(·)) \leq e^{λT}|w|$, we obtain the bound on $u_ε$. The bound on $\mathcal{E}_ε (u_ε)$ follows from $\mathcal{E}_ε (u_ε) \leq 1 + |u_ε|$. ■

Lemma 3.5. The following bound holds independent of $ε$:

$$\|\nabla_Ω u_ε \|_{L^2}^2 + \|\partial^* (\mathcal{E}_ε u_ε)\|_{L^2}^2 \leq C(T, Ω, M, w, f).$$

(3.4)

Proof. Testing with $\mathcal{E}_ε (u_ε)$ in $(P_ε)$, using $\nabla_Ω u_ε \nabla_Ω (\mathcal{E}_ε (u_ε)) = (\mathcal{E}_ε)'(u_ε)|\nabla_Ω u_ε|^2 \geq |\nabla_Ω u_ε|^2$, integrating over time and using the previous estimate, we find

$$\frac{1}{2} \|\mathcal{E}_ε (u_ε(T))\|_{L^2(Ω(T))}^2 + \int_0^T \|\nabla_Ω u_ε(t)\|^2 dt \leq \frac{1}{2} (1 + M)^2 |Ω| + C_1(T, M, w, f).$$

The bound on the time derivative follows by taking supremums. See the electronic supplementary material, S10, for more details. ■

Lemma 3.6. Define $\bar{u}_ε = \phi_{-τ} u_ε$. The following limit holds uniformly in $ε$:

$$\lim_{h \to 0} \int_0^T \int_{Ω_0} |\bar{u}_ε(t + h) - \bar{u}_ε(t)| = 0.$$

Proof. We follow the proof of theorem A.1 in [8] here. Fix $h ∈ (0, T)$ and consider

$$\int_0^T (\mathcal{E}_ε (\bar{u}_ε(t + h)) - \mathcal{E}_ε (\bar{u}_ε(t)), \bar{u}_ε(t + h) - \bar{u}_ε(t))_{L^2(Ω_0)} dt$$

$$= \int_0^T \int_t^{t+h} \frac{d}{dτ} (\mathcal{E}_ε (\bar{u}_ε(τ)), \bar{u}_ε(τ + h) - \bar{u}_ε(τ))_{L^2(Ω_0)} dτ dt$$

$$\leq \sqrt{h} \| (\mathcal{E}_ε (\bar{u}_ε))'\|_{L^2(0,T;H^{-1}(Ω_0))} \int_0^T \|\bar{u}_ε(t + h)\|_{H^1(Ω_0)} + \|\bar{u}_ε(t)\|_{H^1(Ω_0)} dt$$

$$\leq C_1(T, Ω, M, w, f) \sqrt{h} \| (\mathcal{E}_ε (\bar{u}_ε))'\|_{L^2(0,T;H^{-1}(Ω_0))} (\text{by the uniform estimates})$$

$$\leq C_2(T, Ω, M, w, f) \sqrt{h} \|\partial^* (\mathcal{E}_ε (u_ε))\|_{L^2}^2 (\text{see the proof of theorem 2.33 in [6]})$$

$$\leq C_3(T, Ω, M, w, f) \sqrt{h},$$

(3.5)

with the last inequality by (3.4). Now, as the $\mathcal{U}_ε$ are uniformly bounded above, they are uniformly equicontinuous. Therefore, for fixed $δ$, there is a $σ_δ$ (depending solely on $δ$) such that

$$\text{if } |y - z| < σ_δ, \text{ then } |\mathcal{U}_ε(y) - \mathcal{U}_ε(z)| < δ \text{ for any } ε.$$

(3.6)

So in the set $\{ |\bar{u}_ε(t + h) - \bar{u}_ε(t)| > δ \} = \{ |\mathcal{U}_ε(\mathcal{E}_ε (\bar{u}_ε(t + h))) - \mathcal{U}_ε(\mathcal{E}_ε (\bar{u}_ε(t)))| > δ \}$, we must have $|\mathcal{E}_ε (\bar{u}_ε(t + h)) - \mathcal{E}_ε (\bar{u}_ε(t))| \geq σ_δ$ (this is the contrapositive of (3.6)). This implies from (3.5) that

$$\int_0^T \int_{Ω_0} |\bar{u}_ε(t + h) - \bar{u}_ε(t)| \chi_{\{ |\bar{u}_ε(t + h) - \bar{u}_ε(t)| > δ \}} dt \leq \frac{C_3 \sqrt{h}}{σ_δ}.$$

Writing $Id = \chi_{\{ |\bar{u}_ε(t + h) - \bar{u}_ε(t)| > δ \}} + \chi_{\{ |\bar{u}_ε(t + h) - \bar{u}_ε(t)| \leq δ \}}$, note that

$$\int_0^T \int_{Ω_0} |\bar{u}_ε(t + h) - \bar{u}_ε(t)| dt \leq \int_0^T \int_{Ω_0} |\bar{u}_ε(t + h) - \bar{u}_ε(t)| \chi_{\{ |\bar{u}_ε(t + h) - \bar{u}_ε(t)| > δ \}} dt + \delta |Ω_0|(T - h)$$

$$\leq \frac{C_3 \sqrt{h}}{σ_δ} + δ |Ω_0|T.$$

Taking the limit as $h \to 0$, using the arbitrariness of $δ > 0$ and the fact that the right-hand side of the above does not depend on $ε$ gives us the result. ■
(b) Existence of bounded weak solutions

With all the uniform estimates acquired, we can extract (weakly) convergent subsequences. In fact, we find (we have not relabelled subsequences)

\[
\begin{align*}
\nu_{\epsilon} & \to u \quad \text{in } L^p_{t,x} \text{ for any } p, q \in [1, \infty), \\
\nabla_{\Omega} \nu_{\epsilon} & \to \nabla_{\Omega} u \quad \text{in } L^2_{t,x}
\end{align*}
\]

and

\[
E_{\epsilon}(\nu_{\epsilon}) \to \chi \quad \text{in } L^2_{t,x}
\]

where only the first strong convergence list requires an explanation. Indeed, the point is to apply [24, theorem 5] with \(H^1(\Omega_0) \hookrightarrow L^1(\Omega_0) \subset L^1(\Omega_0)\), which gives us a subsequence \(\nu_{\epsilon_j} \to \bar{\rho}\) strongly in \(L^1(0, T; L^1(\Omega_0))\). It follows that \(\nu_{\epsilon_j} \to \rho\) in \(L^1_t\), whence, for a.a. \(t\), \(\nu_{\epsilon_j}(t) \to \rho(t)\) a.e. in \(\Omega(t)\). We also know that, for a.a. \(t\), \(|\nu_{\epsilon_j}(t)| \leq C\) a.e. in \(\Omega(t)\) by lemma 3.4, and so, for a.a. \(t\), the limit satisfies \(|\rho(t)| \leq C\) a.e. in \(\Omega(t)\) too. By theorem 2.10, \(\nu_{\epsilon_j} \to \rho\) in \(L^1_t\) for all \(p, q \in [1, \infty)\). As \(\nu_{\epsilon_j} \to u\) (subsequences have the same weak limit), it must be the case that \(\rho = u\).

Proof of theorem 1.3. In \((P_3)\), we can test with a function \(\eta \in W(H^1, L^2)\) with \(\eta(t) = 0\), integrate by parts and then pass to the limit to obtain

\[
0 = \int_0^T \int_{\Omega(t)} \eta(t)\frac{\partial}{\partial t}(\chi(t)) + \int_0^T \int_{\Omega(t)} \nabla_{\Omega} \nu(t)\nabla_{\Omega} \eta(t) = \int_0^T \int_{\Omega(t)} f(t)\eta(t) + \int_{\Omega(t)} e_0\eta(0)
\]

and it remains to be seen that \(\chi \in E(u)\) or equivalently \(u = \mathcal{U}(\chi)\). By monotonicity of \(E_\epsilon\), we have for any \(w \in L^2_{t,x}\)

\[
\int_0^T \int_{\Omega(t)} (E_{\epsilon}(\nu_{\epsilon}) - w)(\nu_{\epsilon} - E_\epsilon w) \geq 0.
\]

Because \(E_\epsilon \to \mathcal{U}\) uniformly, for a.a. \(t\), \(E_{\epsilon}(w(t)) \to \mathcal{U}(w(t))\) a.e. in \(\Omega(t)\), and \(|E_{\epsilon}(\nu_{\epsilon})| \leq |w|\), and the dominated convergence theorem shows that \(E_{\epsilon}(\nu_{\epsilon}) \to \mathcal{U}(w)\) in \(L^2_{t,x}\). Using this and (3.7), we can easily pass to the limit in this inequality and obtain

\[
\int_0^T \int_{\Omega(t)} (\chi - w)(\nu_{\epsilon} - \mathcal{U}(w)) \geq 0 \quad \text{for all } w \in L^2_{t,x}.
\]

By Minty’s trick we find \(u = \mathcal{U}(\chi)\); see the electronic supplementary material, S11, for more details. To see why \(\chi \in L^\infty_{t,x}\), we have from the estimate in lemma 3.4 that, for a.a. \(t \in [0, T]\), \(\|E_{\epsilon}(\nu_{\epsilon}(t))\|_{L^\infty(\Omega(t))} \leq C\) giving \(E_{\epsilon}(\nu_{\epsilon}(t)) \to \tilde{\chi}(t)\) in \(L^\infty(\Omega(t))\) and (by weak-* lower semi-continuity) \(\|\tilde{\chi}(t)\|_{L^\infty(\Omega(t))} \leq C\) for a.a. \(t\), and we just need to identify \(\tilde{\chi} \in E(\tilde{u})\). It follows from (3.7) that \(E_{\epsilon}(\nu_{\epsilon}) \to \chi\) in \(L^2_{t,x}\) by Lions–Aubin, and so, for a.e. \(t\) and for a subsequence (not relabelled), \(E_{\epsilon}(\nu_{\epsilon}(t)) \to \chi(t)\) in \(H^{-1}(\Omega(t))\). This allows us to conclude that \(\chi = \tilde{\chi}\) (the weak-* convergence of \(E_{\epsilon}(\nu_{\epsilon}(t))\) to \(\tilde{\chi}(t)\) also gives weak convergence in any \(L^p(\Omega(t))\) to the same limit).

(c) Continuous dependence and uniqueness of bounded weak solutions

The next lemma, which has an extended proof in the electronic supplementary material, S12, allows us to drop the requirement for our test functions to vanish at time \(T\).

Lemma 3.7. If \((u, \nu)\) is a bounded weak solution (satisfying (1.3)), then \((u, \nu)\) also satisfies

\[
\int_{\Omega(T)} e(T)\eta(T) - \int_0^T \int_{\Omega(t)} \nu(t)e(t) + \int_0^T \int_{\Omega(t)} \nabla_{\Omega} u(t)\nabla_{\Omega} \eta(t) = \int_0^T \int_{\Omega(t)} f(t)\eta(t) + \int_{\Omega(t)} e_0\eta(0)
\]

for all \(\eta \in W(H^1, L^2)\).

Proof. To see this, for \(s \in (0, T]\), consider the function \(\chi_{s, \epsilon}(t) = \min(1, \epsilon^{-1}(s - t)^+)\) which has a weak derivative \(\chi'_{s, \epsilon}(t) = -\epsilon^{-1}\chi(s - \epsilon^3)(t)\). Take the test function in (1.3) to be \(\chi_{s, \epsilon}(t)\eta\), where \(\eta \in W(H^1, L^2)\), send \(\epsilon \to 0\) and use the Lebesgue differentiation theorem.

\[\square\]
We can finally prove theorem 1.4. See the electronic supplementary material, S13–S16, for additional comments on the proof.

Proof of theorem 1.4. We can prove the continuous dependence as in [21, ch. V, §9]. As explained in lemma 3.7, we drop the requirement \(\eta(T) = 0 \) in our test functions and we now suppose that \(\Delta \Omega \eta \in L^2_T \). Suppose for \(i = 1, 2 \) that \((u_i, e_i)\) is the solution to the Stefan problem with data \((f_i, u_0^i)\), so

\[
\int_{\Omega(t)} (e_1(t) - e_2(t)) \eta(t) = 0 \quad \text{for all } t, \quad \int_{\Omega(t)} (e_1(t) - e_2(t)) \eta(t) - \int_{\Omega(t)} (e_1(t) - e_2(t)) \Delta \Omega \eta(t) = \int_{\Omega(t)} (u_1(t) - u_2(t)) \Delta \Omega \eta(t) \quad \text{for all } t.
\]

Define \(a = (u_1 - u_2)/(\epsilon_1 - \epsilon_2) \) when \(\epsilon_1 \neq \epsilon_2 \) and \(a = 0 \) otherwise, and note that \(0 \leq a(x, t) \leq 1 \). Let \(\eta_e \) solve in \(\int_{\tau \in (0, T)} \times \Omega(t) \) the equation

\[
\partial_t \eta_e(t) + (a_e(x, \tau) + \epsilon) \Delta \Omega \eta_e(t) = 0 \quad \text{and} \quad \eta_e(0) = \xi \quad \text{on } \Omega_0
\]

with \(\xi \in C^1(\Omega_0) \) and where \(a_e \) satisfies \(a_e(x, t) \in C^2([0, T] \times \Omega_0) \) and \(0 \leq a_e \leq 1 \) a.e. and \(\|a_e - a\|_{L^2(\Omega)} \leq \epsilon \). This is well posed by lemma 2.13. Equation (3.8) can be written in terms of \(a_e \), and if we choose \(\eta = \eta_e \) and use (3.9), we find

\[
\int_{\Omega(t)} (e_1(t) - e_2(t)) \xi \leq \|a_1 - a_e\|_{L^\infty_T} \int_{\Omega(t)} \left(|a(x, \tau) - a_e(x, \tau)| + \epsilon \right) |\Delta \Omega \eta_e(t)|
\]

and

\[
\int_{\Omega(t)} (e_1(t) - e_2(t)) \xi \leq \|a_1 - a_e\|_{L^\infty_T} \int_{\Omega(t)} |f_1(\tau) - f_2(\tau)|_{L^1(\Omega(t))} + \|\xi\|_{L^\infty(\Omega(t))} \int_{\Omega(\Omega_0)} |\nabla \xi|_{L^2(\Omega_0)}
\]

using the \(L^\infty \) bound from lemma 2.13. We can estimate the first integral on the right-hand side:

\[
\int_{\Omega(t)} (e_1(t) - e_2(t)) \xi \leq \sqrt{\|a - a_e\|_{L^\infty_T}} \sqrt{(2 + \epsilon)(1 + e^{2C_w(2 + \epsilon)t})} \|\nabla \xi\|_{L^2(\Omega_0)}
\]

and

\[
\int_{\Omega(t)} |\Delta \Omega \eta_e(t)| \leq \sqrt{\|\Omega\|_{L^\infty_T}} \sqrt{(2 + \epsilon)(1 + e^{2C_w(2 + \epsilon)t})} \left(\int_{\Omega(\Omega_0)} |\nabla \xi|_{L^2(\Omega_0)} \right)^{1/2}
\]

by the results in lemma 2.13. Sending \(\epsilon \to 0 \) in (3.10) gives us (recalling \(\xi \leq 1 \))

\[
\int_{\Omega(t)} (e_1(t) - e_2(t)) \xi \leq \int_{\Omega(t)} |f_1(\tau) - f_2(\tau)|_{L^1(\Omega(t))} + \|\xi\|_{L^\infty(\Omega(t))} \int_{\Omega(t)} |\nabla \xi|_{L^2(\Omega_0)}.
\]

Now pick \(\xi = \xi_n \), where \(\xi_n(x) = \text{sign}(e_1(t, x) - e_2(t, x)) \in L^2(\Omega(t)) \) a.e. in \(\Omega(t) \).

d) Well posedness of weak solutions

Proof of theorem 1.5. Suppose \((e_0, f) \in L^1(\Omega_0) \times L^1_{\text{loc}}\) are data and consider functions \(e_0n \in L^\infty(\Omega_0) \) and \(f_n \in L^\infty_{L^\infty} \) satisfying

\[
(f_n, e_0n) \to (f, e_0) \quad \text{in } L^1_{L^1} \times L^1(\Omega_0).
\]

The existence of \(f_n \) holds because, by density, there exist \(\tilde{f}_n \in C^0([0, T] \times \Omega_0) \) such that \(\tilde{f}_n \to \tilde{f} \) in \(L^1((0, T) \times \Omega_0) \equiv L^1(0, T; L^1(\Omega_0)) \). Denote by \((u_n, e_n)\) the respective (bounded weak) solutions to the Stefan problem with the data \((e_0n, f_n)\). By virtue of these solutions satisfying the continuous dependence result, it follows that \(\{e_n\}_n \) is a Cauchy sequence in \(L^1_{L^1} \) and thus \(e_n \to e \) in \(L^1_{L^1} \) for some \(e \). Recall that \(|u_n| = |\mathcal{L}(e_n)| \leq |e_n| \), so, by consideration of an appropriate Nemytskii map,
we find \(u_n = U(e_n) \rightarrow U(\chi) \). Now we can pass to the limit in

\[
- \int_0^T \int_{\Omega(t)} \dot{\eta}(t)e_n(t) - \int_0^T \int_{\Omega(t)} u_n(t)\Delta_t \eta(t) = \int_0^T \int_{\Omega(t)} f_n(t)\eta(t) + \int_{\Omega_0} e_n\eta(0)
\]

and so gives

\[
- \int_0^T \int_{\Omega(t)} \dot{\eta}(t)\chi(t) - \int_0^T \int_{\Omega(t)} U(\chi(t))\Delta_t \eta(t) = \int_0^T \int_{\Omega(t)} f(t)\eta(t) + \int_{\Omega_0} e_\chi\eta(0);
\]

overall this shows that there exists a pair \((\chi, \mathcal{E}^{-1}(\chi))\) \(\in L^1_L \times L^1_L \) which is a weak solution of the Stefan problem. For these integrals to make sense, we need \(\eta \in W^1(L^\infty \cap H^2, L^\infty) \) with \(\Delta_t \eta \in L^\infty \).

Now suppose that \((u^1, e^1)\) and \((u^2, e^2)\) are two weak solutions of class \(L^1 \) to the Stefan problem with data \((f^1, e^1_0)\) and \((f^2, e^2_0)\) in \(L^\infty_L \times L^1(\Omega_0) \), respectively. We know that there exist approximations \((f^1_n, e^1_{0n}), (f^2_n, e^2_{0n}) \in L^\infty_L \times L^\infty(\Omega_0) \) of the data satisfying

\[
(f^1_n, e^1_{0n}) \rightarrow (f^1, e^1_0) \quad \text{and} \quad (f^2_n, e^2_{0n}) \rightarrow (f^2, e^2_0) \quad \text{in} \quad L^1_L \times L^1(\Omega_0).
\]

These approximate data give rise to the approximate solutions \(e^1_n \) and \(e^2_n \) both of which are elements of \(L^\infty_L \). It follows from above that \(e^1_n \rightarrow e^1 \) and \(e^2_n \rightarrow e^2 \) in \(L^1_L \). Now consider the continuous dependence result that \(e^1_n \) and \(e^2_n \) satisfy:

\[
\|e^1_n - e^2_n\|_{L^1_L} \leq T(\|f^1_n - f^2_n\|_{L^1_L} + \|e^1_{0n} - e^2_{0n}\|_{L^1(\Omega_0)}).
\]

(3.11)

Regarding the right-hand side, by writing \(e^1_{0n} - e^2_{0n} = e^1_{0n} - e^1_0 + e^1_0 - e^2_0 + e^2_0 - e^2_{0n} \) (and similarly for the \(f^1_n \) and using triangle inequality, along with the fact that \(e^1_n - e^2_n \rightarrow e^1 - e^2 \) in \(L^1_L \), we can take the limit in (3.11) as \(n \rightarrow \infty \) and we are left with what we desired.

\[\Box\]

Funding. A.A. was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant no. EP/H023364/1 within the MASDOC Centre for Doctoral Training.

Acknowledgements. This work was initiated at the Isaac Newton Institute in Cambridge, UK during the Free Boundary Problems and Related Topics programme (January–July 2014). The authors are grateful to the referees for their useful feedback and encouragement.

References

