
By William R. Dichtel, James R. Heath and J. Fraser Stoddart

The development of molecular electronic components has been accelerated by the promise of increased circuit densities and reduced power consumption. Bistable rotaxanes have been assembled into nanowire crossbar devices, where they may be switched between low- and high-conductivity states, forming the basis for a molecular memory. These memory devices have been scaled to densities of 10^{11} bits cm$^{-2}$, the 2020 node for memory of the International Technology Roadmap for Semiconductors. Investigations of the kinetics and thermodynamics associated with the electromechanical switching processes of several bistable [2]rotaxane derivatives in solution, self-assembled monolayers on gold, polymer electrolyte gels and in molecular switch tunnel junction devices are consistent with a single, universal switching mechanism whose speed is dependent largely on the environment, as well as on the structure of the switching molecule. X-ray reflectometry studies of the bistable rotaxanes assembled into Langmuir monolayers also lend support to an oxidatively driven mechanical switching process. Structural information obtained from Fourier transform reflection absorption infrared spectroscopy of rotaxane monolayers taken before and after evaporation of a Ti top electrode confirmed that the functionality responsible for switching is not affected by the metal deposition process. All the considerable experimental data, taken together with detailed computational work, support the hypothesis that the tunnelling current hysteresis, which forms the basis of memory operation, is a direct result of the electromechanical switching of the bistable rotaxanes.

Keywords: supramolecular chemistry; molecular electronics; bistable rotaxanes; switching; molecular memory; nanofabrication

1. Interlocked molecules in molecular electronic devices

‘Bottom-up’ approaches to the fabrication of molecular electronic devices (MEDs) are likely to become increasingly important as a means of overcoming the fundamental limitations of ‘top-down’ lithographic techniques. In the context...
of this potentially changing agenda, the use of molecules as the passive and active components in devices promises ultimate scalability, minimal power consumption and low fabrication costs. Over the past few years, we have tapped into the advances in supramolecular chemistry (Lehn 1995) and template-directed synthesis (Anelli et al. 1992; Tseng & Stoddart 2002) to come up with a successful design of electrochemically switchable bistable [2]catenanes (Balzani et al. 2000) and [2]rotaxanes (Bissell et al. 1994; Tseng et al. 2004a). These molecular switches, based on mechanically interlocked and movable components, have been fabricated into nanowire crossbar arrays, producing working defect-tolerant memory devices of unprecedented densities. This article highlights the development of these molecular memory devices and the extensive experimental and theoretical investigations of the structure and mechanism of their operation in a variety of different chemical environments. Although the scope of this article is limited to the discussion of bistable [2]rotaxanes, bistable [2]catenanes have also been successfully incorporated and switched in the molecular switch tunnel junctions (MSTJs; Collier et al. 2000, 2001; Diehl et al. 2003).

The bistable redox-switchable [2]rotaxanes that have been used in MSTJs consist of a tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT$^{4+}$), with its two π-electron-deficient bipyridinium units, encircling a linear rod component.
containing π-election-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) units and terminated by bulky stoppers at each end (figure 1). Under standard conditions, the CBPQT$^{4+}$ ring in the bistable [2]rotaxane 1$^{4+}$ exhibits a 9 : 1 preference for encircling the TTF rather than the DNP unit. The TTF-encircled translational isomer of the bistable [2]rotaxane is therefore the ground-state co-conformation (GSCC) and its free energy is 1.8 kcal mol$^{-1}$ lower than that of the DNP-encircled isomer, the metastable state co-conformation (MSCC; Choi et al. 2006). The first two oxidation processes carried out on 1$^{4+}$ remove electrons from the TTF π-system, resulting in the sequential formation of the TTF radical cation (TTF$^{+}$) and dication (TTF$^{2+}$), respectively. The

Figure 2. (a) MSTJ devices have been fabricated from the amphiphilic bistable [2]rotaxane 2$^{4+}$, the control dumb bell compound 3, and the simple control, eicosanoic acid 4. (b) The MSTJ device consists of a molecular monolayer sandwiched between a polycrystalline Si bottom electrode and a Ti/Al top electrode. (c) The remnant molecular signatures of 2$^{4+}$ (black) and 3 (green) recorded in micrometre-sized MSTJ devices. (d) The remnant molecular signatures of 2$^{4+}$ (black) and 4 (red) in nanometre-scale MSTJ devices. In the devices at both size scales, those made from 2$^{4+}$ display clear hysteretic tunnelling currents and well-defined turn-on and turn-off voltages. Devices made from the two control molecules behave as classical tunnelling junctions, the only notable feature being the non-specific electric breakdown of 3 observed at -3 V. (e) The tunnelling current observed in the nanometre-scale MSTJ devices containing 2$^{4+}$ (black) over the course of 35 cycles between the switch closed (write at +2.0 V) and switch open (−2.0 V) states. Several cycles of a device incorporating 4 (red) show unchanged tunnelling current levels under the same conditions.
coulombic repulsion between the TTF$^{+\cdot}$ and CBPQT$^{4+}$ induces the ring to move to the DNP site. When TTF$^{+\cdot}$ or TTF$^{2+}$ is reduced back to the neutral TTF form, the molecule is captured on the GSCC : MSCC potential energy surface only as the MSCC, where it remains for a period of time determined by the energy barrier (ΔG^\ddagger) separating the two co-conformations. Over the course of several MSCC half-lives (ranging from less than 1 s in solution to approximately 1 h in crossbar devices), the GSCC : MSCC equilibrium is re-established. The ability to switch an ensemble of bistable [2]rotaxane molecules from the equilibrium GSCC : MSCC distribution almost exclusively to the MSCC defines, respectively, the ‘open’ and ‘closed’ states of the switch, forming the basis for using these molecules in information storage.

While the bistable [2]rotaxanes were initially designed to operate in the solution phase, the successful incorporation of these molecules into solid-state devices is a prerequisite for their use as molecular electronic components. The amphiphilic bistable [2]rotaxane 2$^{1+}$ (figure 2a) forms smooth Langmuir–Blodgett (LB) monolayers, which were transferred onto a highly doped Si electrode (Luo et al. 2002). A thin protective layer of Ti (2 nm) was evaporated on top of the monolayer, followed sometimes by deposition of an aluminium top layer (figure 2b). This basic structure is conserved for MSTJs and crossbar memory circuits over length-scales ranging from square micrometres down to approximately 225 nm2 per crossbar in the device.

Evidence of molecular switching in MSTJs is best characterized by measuring a remnant molecular signature (Collier et al. 2000; Luo et al. 2002). This particular measurement involves applying a write voltage across the device, after which the tunnelling current is measured at -100 mV. The first measurement is taken with a write voltage of 0.0 V with the molecules in the switch-open GSCC : MSCC equilibrium state. The write voltage is increased in 40 mV steps to $+2.0$ V, down to -2.0 V and finally back to 0.0 V. Remnant molecular signatures (figure 2c,d) measured from MSTJs containing the amphiphilic bistable [2]rotaxane 2$^{1+}$ have the same qualitative features, that is, the devices remain in a low conductance state from the beginning of the remnant measurement until the write voltage increases to $+2.0$ V. At $+2.0$ V, the device switches ON, adopting a higher conductivity state. It remains in the ON state until the write voltage reaches -2.0 V, whereupon the device returns to its lower conductivity state. The ratio in conductivity between the ON and OFF states—the so-called ON/OFF ratio—for bistable [2]rotaxanes is approximately 10. It is also important to recognize that this hysteretic current response is only observed when switchable bistable [2]rotaxanes are present in the devices. The devices based on either the analogous amphiphilic dumb bell 3, i.e. the amphiphilic bistable [2]rotaxanes minus the CBPQT$^{4+}$ ring or in which the motion of the CBPQT$^{4+}$ ring is impeded sterically (Choi et al. 2006), as well as simple molecules such as eicosanoic acid 4 show no hysteresis associated with their remnant molecular signatures.

The sharp turn-on and turn-off voltages and the distinct high- and low-conductivity states observed in the remnant molecular signatures allow for predictable device operation, an important feature for construction of large memory.
arrays. Bits are turned ON by the application of a +2.0 V signal and OFF by applying −2.0 V. Devices can be cycled (figure 2e) between the ON and OFF states more than 100 times (although 10–20 cycles is more typical) without significant deterioration of the ON/OFF current ratio.

Based on the observation of an increased tunnelling current following the application of an oxidizing voltage, we hypothesized that the GSCC serves as the ‘switch-open’ device state, while the MSCC is responsible for the more highly conductive ‘switch closed’ state. In addition to the experimental correlation of the kinetics and thermodynamics of switching in solution with those in devices, this hypothesis was supported by first-principles simulations (Deng et al. 2004; Jang & Goddard 2006).

Simulated current–voltage curves of the two switch states of a somewhat simplified bistable [2]rotaxane (figure 3a,b) predicted that the MSCC should be 10–100 times more conductive than the GSCC, in agreement with the experimental MSTJ results. Furthermore, calculation of the frontier molecular orbitals of the two switch states suggested a model for the higher conductivity of the MSCC (Deng et al. 2004). The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the MSCC are significantly delocalized along the length of the rotaxane molecule, whereas each of the frontier molecular orbitals of the GSCC are localized on either the TTF station or the Au electrodes (figure 3c). These calculations, combined with experimental observations, support the assignment of the MSCC and GSCC to the ON and OFF states, respectively, of the switch.

Memory circuits incorporating bistable rotaxanes into crossbar architectures were designed and fabricated. The crossbar architecture not only exhibits the highest possible bit density for an electronically addressable memory at a given pattern resolution, but it has also been noted for its defect tolerance (Heath et al. 1998). Simple 64-bit memory devices (figure 4a) were fabricated by switching bistable rotaxanes (approx. 10^8 molecules per junction) in the crosspoints of an 8 × 8 grid of nanowire electrodes (Luo et al. 2002). Each individual bit could be turned on by applying +1.0 V to a bottom wire and −1.0 V to a top wire. This delicate way of addressing the device localizes a +2.0 V potential difference in the junction of interest, while the other junctions in the device feel a maximum potential of either +1.0 or −1.0 V. One of the 16 wires in the 64-bit memory was not operational, leaving 56 remaining good bits (figure 4b). Using these 56 operational bits, text strings in ASCII code were written, stored, read and erased (figure 4c).

After having successfully demonstrated the molecular electronic memory in devices fabricated using lithographic patterning methods, we initiated an effort to demonstrate one of the most promising features of molecular electronics—namely, scalability down and close to molecular dimensions. Over the past few years, one of us has developed the superlattice nanowire pattern transfer (SNAP) method for the fabrication of ultradense nanowire arrays (Melosh et al. 2003). The SNAP method has been used to pattern high quality metal or semiconductor nanowires at nanowire width and pitch as small as 8 and 16 nm, respectively. The development of techniques for fabrication, doping and reactive ion etching of
these systems, resulting in arrays of Si nanowires with bulk-like conductivity (figure 5a) ideally suited for ultradense molecular electronic memory, have been reported (Beckman et al. 2004).

A 4.5 kbit memory was fabricated with a bistable [2]rotaxane assembled between bottom Si and top Ti/Al nanowires, each fabricated using the SNAP technique (figure 5b; Beckman et al. 2006). Each junction of the circuit is 10×40 nm in width, affording an area that includes approximately 300 molecules per junction. Though one of us has developed novel and defect-tolerant strategies for multiplexing and demultiplexing individual SNAP wires (Beckman et al. 2005), for simplicity, this 4.5 kbit memory was tested by contacting three or four nanowires simultaneously. Of the 64 effective bits tested in this memory, roughly half worked and these working bits showed qualitatively similar behaviour to that of lower density memory devices. This first demonstration of a working ultradense memory indicates that these devices may be successfully scaled to junctions containing a very small number of molecules. Our most recent efforts have yielded the successful

Figure 3. (a) Structural formula of the bistable [2]rotaxane used in the current–voltage simulations. Three Au atoms were placed at either end as model gold electrodes. (b) Simulated current–voltage curves of this molecule agree with the experimental observation that the MSCC is significantly more conductive than the GSCC. (c) Frontier molecular orbitals of both the MSCC and the GSCC. In the MSCC, both the HOMO and LUMO are delocalized along the length of the molecule, which facilitate tunnelling through the molecular switch. In contrast, the frontier molecular orbitals of the GSCC are localized on either the TTF (LUMO) or the electrodes (HOMO), making this switch state more resistive.

demonstration of a 160 kbit memory at 10^{11} bits cm$^{-2}$ (Green et al. 2007), a density which correlates to the 2028 node of the International Technology Roadmap for Semiconductors published in 2005.

A major goal in the field of molecular electronics is to develop the ability to manipulate device properties predictably through chemical synthesis and solution-state characterization. With the intention from the outset of addressing this challenge, we undertook a major effort to correlate the switching mechanism
of bistable \([2]\)rotaxanes in solution with their behaviour in other more device-relevant environments—for example, in self-assembled monolayers (SAMs; Tseng \textit{et al.} 2004b), viscous polymer gels (Steuerman \textit{et al.} 2004) and MSTJs (Choi \textit{et al.} 2006). These investigations convincingly confirmed that a universal switching mechanism operates across all environments. This important demonstration and realization also suggest key design parameters for developing new molecular switches for use in any device setting.

Kinetic and thermodynamic parameters were measured for three different bistable \([2]\)rotaxanes (figure 6). Compounds \(5^{4+}\) and \(6^{4+}\) contain the same ‘simple’ TTF primary binding site with diethyleneglycol spacers between the TTF and DNP units, and each exhibit a \(1 : 9\) equilibrium MSCC : GCCC ratio. Compound \(7^{4+}\) contains a bispyrrolotetrathiafulvalene (BPTTF) unit as the electrochemically active binding site and, since the CBPQT\(4^+\) ring exhibits a weaker preference for binding the BPTTF relative to the DNP unit, the equilibrium ratio for MSCC : GCCC falls to \(1 : 4\) at \(288\) K. Compounds \(5^{4+}\) and \(7^{4+}\) each contains hydrophilic stoppers for incorporation into MSTJs as LB monolayers. In compound \(6^{4+}\), the hydrophilic stopper is replaced by the one bearing a benzylic alcohol function, which serves as a handle to allow it to be incorporated into other device settings.

\(\text{(a) Solution phase}\)

The first oxidation of the TTF units in the bistable \([2]\)rotaxane is highly sensitive to the location of the CBPQT\(4^+\) ring, permitting a determination of the MSCC : GCCC ratio by cyclic voltammetry (CV; Flood \textit{et al.} 2004). As a result, the thermodynamic parameters for the starting-state equilibrium have been...
determined by carrying out a series of variable time and temperature cyclic voltammetry (VTTCV) measurements. For example, the solution phase CV of the bistable [2]rotaxane 7^{4+} (Figure 7) contains a peak at +530 mV, which corresponds to the first oxidation of the BPTTF unit from that part of the equilibrium population of molecules, which are already in the MSCC. The next oxidation peak centred on +680 mV corresponds to the first oxidation of the BPTTF units in the GSCC. The second oxidation of the BPTTF unit at +780 mV is not a reflection of the initial GSCC : MSCC ratio because the CBPQT4 ring moves to the DNP site after the first electron has been removed from the TTF π-system. This measurement of the equilibrium GSCC : MSCC ratio was carried out as a function of temperature. For 7^{4+}, the MSCC : GSCC ratio increased from 0.3 to 0.7 as the temperature was decreased from 284 K down to 262 K. In contrast, the MSCC : GSCC ratios for the 5^{4+} bearing the simple TTF units did not change significantly from 0.1 over a broad temperature range (248–283 K).

These sharply contrasting responses to temperature change correspond remarkably well to the thermodynamic binding parameters as measured by isothermal titration calorimetry between the host CBPQT-4PF$_6$ and a diethylene glycol-functionalized DNP derivative and very similar TTF derivatives as guests (Choi et al. 2006). On the other hand, the binding of the CBPQT$^{4+}$ host to the BPTTF-containing guest, relative to that of the DNP-containing guest, exhibit a high enthalpy difference—a factor which leads to temperature-sensitive equilibria—the binding of guests containing TTF relative to those containing DNP exhibit almost no difference in enthalpy, resulting in a switch whose equilibrium ratio is not highly temperature dependent. The ability to design temperature-independent molecular switches based on binding data obtained from small model compounds is an important objective in molecular electronics, simply because most applications require consistent operation over a wide range of temperatures.

The kinetic barrier to relaxation from the MSCC to the steady-state equilibrium was also measured in solution by VTTCV by collecting two consecutive CV scans, beginning with the molecules in the GSCC (Flood et al. 2004; Choi et al. 2006). The first scan gives information about the MSCC : GSCC equilibrium ratio. If, however, the second scan is collected before the system re-establishes the steady-state equilibrium, it will show an area-enhanced oxidation peak for the MSCC. By performing this measurement at different scan rates, a measure of the rate of relaxation of the MSCC to the GSCC is obtained, and the full characterization of this behaviour over a range of temperatures allows quantification of the activation barrier using the Eyring relationship, 5^{4+} and 7^{4+} exhibited barriers to relaxation (ΔG^\ddagger_{298}) of 16.2 and 17.7 kcal mol$^{-1}$, respectively. These values correspond to a MSCC solution half-life (τ_{298}) ranging from 1.2 s for 7^{4+} to 0.123 s for 5^{4+}.

(b) Self-assembled monolayers on gold

An investigation of the switching processes experienced by a bistable [2]rotaxane assembled onto gold electrode ‘half-devices’ represents a key step in the understanding of the behaviour of molecular switches when they are assembled into ‘full-devices’ containing both top and bottom electrodes (Tseng et al. 2004b). A derivative of the bistable [2]rotaxane 6^{4+} (Figure 8), capable of forming SAMs on Au, was prepared by functionalizing the benzylic alcohol group at the smaller of the two stoppers with a disulphide tether. VTTCV experiments, similar to these described for
Figure 6. Structural formulae of the translational isomers of the bistable [2]rotaxanes used for kinetic and thermodynamic studies across a variety of chemical environments. All of the tetracationic bistable [2]rotaxanes discussed in this work were isolated and characterized as their tetrakis(hexafluorophosphate) salts.
solution-phase measurements, were performed using a standard three-electrode temperature-controlled cell with a SAM-functionalized Au working electrode. Significantly, the initial CV scans of the SAMs showed an identical MSCC : GSCC equilibrium ratio (approx. 0.1) as those of 5^4+ in solution. This ratio was also shown

Figure 7. Cyclic voltammetry of (a) 6^4+ and (b) 7^4+ obtained from solutions of the rotaxanes initially at translational equilibrium. The magnitude of the MSCC oxidation peak remains fairly constant over a 35°C range for 6^4+, whereas the MSCC oxidation peak seen from 7^4+ increases in intensity upon cooling 22°C.

Figure 8. (a) Structure of a switchable bistable [2]rotaxane derivative of 6^4+ that forms SAMS on gold surfaces. (b) The cathodic peaks of the second CV cycles measured at various scan rates at 288 K. The fraction of molecules remaining in the MSCC increases with increased scan rate, as observed by the enhanced oxidation peak at +310 mV. (c) The relaxation decay of the MSCC isomer over a range of different temperatures. This process was modelled as a thermally activated first-order decay, with an activation energy calculated from an Arrhenius plot (E_a) of 17.7 ± 2.8 kcal mol⁻¹.
to be relatively insensitive to temperature, suggesting that the thermodynamic aspects of the molecular switch are unchanged in the half-device format.

The barrier to relaxation in the SAMs was determined by quantifying the MSCC : GSCC ratio over a range of different scan rates and temperatures (Tseng et al. 2004b). The appearance of (i) a strongly enhanced MSCC oxidation peak, (ii) the disappearance of the GSCC oxidation peak, and (iii) the time-dependent re-equilibration of the solution and surface-bound bistable molecules suggest strongly that the switching mechanism observed in solution is also operating in the SAM environment. The relaxation barrier \(\Delta G^{\ddagger} \) calculated from an Eyring plot of the rate of MSCC relaxation as a function of temperature was 17.8 kcal mol\(^{-1}\), corresponding to a \(\tau_{293} \) of 4.6 s, that is, roughly two orders of magnitude longer than the lifetime of the MSCC of 5\(^{4+}\) in solution.

(c) Polymer matrices

The two states of the redox-controllable bistable [2]rotaxanes containing CBPQT\(^{4+}\) encircling TTF and DNP units differ in colour on account of the green CBPQT\(^{4+}\)/TTF charge-transfer interaction in the GSCC and the red CBPQT\(^{4+}\)/DNP charge-transfer interaction in the MSCC. Hence, bistable [2]rotaxanes, dispersed in a polymer electrolyte gel, form the basis for a two-colour electrochromic device (figure 9a–c; Steuerman et al. 2004). It is this device setting that has inspired subsequent synthetic and theoretical efforts to design tristable systems, capable of displaying red, green and blue from a single molecular switch (Deng et al. 2005). The kinetics and thermodynamics of the switching process in these polymer matrices are of both mechanistic and practical interests, since key device metrics, such as the intensity and the speed of the colour change, depend on these parameters.

The polymer matrix (MeCN/poly(methyl methacrylate)/propylene carbonate/LiClO\(_4\), 70 : 7 : 20 : 7) is 10000 times more viscous than the MeCN solvent used for the solution measurements. Not surprisingly, the viscous media presents an increased barrier to shuttling, namely 18.1 kcal mol\(^{-1}\) for 5\(^{4+}\) and 19.4 kcal mol\(^{-1}\) for 7\(^{4+}\), again resulting in MSCC lifetimes at least two orders of magnitude longer than those observed in solution. These changes are consistent with what would be expected from Kramers’ theory (Kramers 1940). Despite the increased barrier to relaxation to the GSCC, the ground-state thermodynamics were unaffected by the polymer matrix. For 5\(^{4+}\), each of the VTTCV initial scans taken at different temperatures showed the same 10 : 1 preference for the GSCC as observed in solution. By contrast, the MSCC : GSCC equilibrium ratio for 7\(^{4+}\) remained quite temperature sensitive in the polymer environment. This phenomenon is also apparent in MSCC decay profiles (figure 9e) as the decay approaches asymptotically higher MSCC : GSCC equilibrium ratios at lower temperatures.

(d) Molecular switch tunnel junctions

The position of the MSCC : GSCC equilibrium and barrier to MSCC relaxation are both extremely important parameters in MSTJ memory devices. A low preference for the GSCC or highly temperature-dependent equilibrium would lead to poor or thermally unstable ON/OFF ratios. Furthermore, the retention time of the memory is directly related to the barrier of MSCC
Molecular electronic devices

Figure 9. (a–c) Operation of an electrochromic polymer device based on bistable [2]rotaxane 6^{4+}. The working (W), counter (C) and reference (R) electrodes are indicated in (a). (a) The device at zero bias and the molecules in the GSSC : MSCC equilibrium. (b) A +1 V potential has been applied across the device, causing oxidation of the TTF followed by translational isomerization. Returning the device back to zero bias generates the metastable state of 6^{4+}, causing the polymer matrix to appear red. (c) Several seconds after the working electrode has been returned to zero bias, 6^{4+} has relaxed back to the GSSC : MSCC equilibrium, regenerating the original green colour. (d–f) Experimental data used to extract the kinetic parameters of the MSCC→GSSC relaxation process of 6^{4+} within the solid-state polymer electrolyte environment. (d) A series of second scan CVs recorded at 296 K at various scan rates. The intensity of the first oxidation wave is indicative of the MSCC population. (e) The population ratios of the MSCC and the relaxation times fit well to a first-order decay model. (f) The temperature dependence of the relaxation kinetics expressed as an Eyring plot.

Figure 10. Decay curves of the high conductivity state of MSTJ devices containing (a) 5^{4+} and (b) 7^{4+}, respectively, recorded over a range of temperatures. The significant temperature dependence of the GSSC : MSCC equilibrium in 7^{4+} is again observed. The MSTJs containing 7^{4+} decay to widely differing equilibrium current ratios at different temperatures, following the trend observed for these molecules in solution.

Phil. Trans. R. Soc. A (2007)
relaxation. Correlation of these parameters in the MSTJ device environment to molecular properties in solution will provide design principles for future MED applications.

Since CV measurements cannot be performed on MSTJs, other electronic probes of the MSCC : GSCC ratio in real time are required. Based on the fact that the MSCC exhibits a higher tunnelling conductivity than the GSCC, the MSCC relaxation can be probed by switching the device to its high-conductance state and measuring the rate of decay back to the low-conductance state (figure 10; Choi et al. 2006). The temperature dependence of the MSCC decay rate allows the calculation of ΔG^\ddagger and τ by the same methods as employed in the VTTCV measurements. Decay curves for both 5^1+ and 7^4+, obtained by this method, clearly show that the relaxation back to the low-current state is an activated process similar to that observed in other environments. However, with a τ_{295} of 3450 s for 5^4+ and 660 s for 7^4+, the MSTJs are nearly three orders of magnitude slower than those observed for SAMs and polymer gels, reflecting the sterically restricted MSTJ environment. Furthermore, despite the difficulty of quantifying the position of the MSCC : GSCC equilibrium in MSTJs, trends in changes of the ON/OFF ratio as a function of temperature can be correlated to the quantitative data obtained in other environments.

In order to gain a more complete understanding of the behaviour of bistable [2]rotaxanes in MSTJs, the superstructures of amphiphilic bistable [2]rotaxane LB monolayers were investigated by both theoretical and experimental methods. Molecular dynamics simulations, performed on bistable [2]rotaxane molecules at the air–water interface, showed an increase in the thickness of the LB monolayer as the area per molecule was decreased, indicating that the molecules are tilted considerably with respect to the water surface until increasing the pressure on the Langmuir trough forces them to stand up (Jang et al. 2005a). Interestingly, the LB monolayer thicknesses were found to be similar for both co-conformations. Thus, switching of the bistable [2]rotaxanes between the GSCC and the MSCC does not require significant reorganization of the monolayer. A similar trend was also noted in simulations of bistable [2]rotaxanes as SAMs on Au surfaces (Jang et al. 2005b).

Calculations of the overall tilt angle of the bistable [2]rotaxane molecules as a function of packing area also support the situation wherein the molecules stand up straighter as they are forced to pack more closely. They also suggest that the overall tilt angle is independent of co-conformation. Interestingly, calculations of individual tilt angles for the two different recognition sites (TTF and DNP) in the [2]rotaxane LB monolayer indicate that the site encircled by the CBPQT4+ ring has a small tilt angle, whereas the free site adopts a folded conformation even in tightly packed films.

The simulated LB monolayer systems were used to calculate electron density profiles as a function of area per molecule. Impressively, these theoretical electron density profiles agree extremely well with those measured experimentally by X-ray reflectometry, providing physical confirmation of the above calculations (Norgaard et al. 2005a). In subsequent X-ray reflectometry
measurements, the electron density of the film was measured both before and after addition of an oxidant to the subphase (figure 11; Norgaard et al. 2005b). The 1.2 nm vertical shift in electron density observed in these experiments is attributed to the movement of the CBPQT\(^{4+}\) ring from the oxidized TTF site to the DNP one. This vertical shift was observed in two different constitutionally isomeric [2]rotaxane systems (figure 11b). When the TTF unit, encircled by the CBPQT\(^{4+}\) ring, was closer to the hydrophobic stopper, addition of oxidant resulted in movement of electron density towards the water surface (figure 11c). The constitutional isomer with the TTF encircled by the CBPQT\(^{4+}\) ring closer to the hydrophilic stopper (94\(^{c}\)) exhibited movement of electron density away from the water surface (figure 11d). Molecular modelling estimates the TTF–DNP distance in an extended conformation of the molecule to be 37 Å, further supporting the notion that the rotaxane molecules are somewhat contorted in the LB monolayer environment. Additional experimental studies on Langmuir films of amphiphilic rotaxanes have elucidated the role of structural modifications of the hydrophilic stoppers to film packing (Lee et al. 2004).

Finally, a very recent investigation sheds light on how deposition of a top Ti electrode affects the integrity of the switching gear in the monolayers of the bistable [2]rotaxanes assembled using the LB technique (DeIonno et al. 2006). Bistable [2]rotaxane monolayers were transferred onto patterned poly Si at three different packing densities (118, 73 and 54 Å\(^2\) per molecule) and characterized by Fourier transform reflection absorption infrared spectroscopy (FT-RAIRS). The spectra were measured again after the deposition of a 2 nm thick film of Ti, and the switching characteristics of subsequent fully fabricated devices were also measured. By checking the properties through this sequence of experiments, it was possible to determine which portions of the bistable [2]rotaxane molecules were damaged by the Ti evaporation process and correlate these changes with device performance. The outcome of all this careful work is that the switching gear survives the fabrication process owing to the protective role played by the hydrophobic stoppers.

Monolayers which were transferred at 73 Å\(^2\) per molecule—the optimum packing density for MSTJ performance—showed changes primarily to the C–H stretches of the tert-butyl groups in the hydrophobic stopper after Ti deposition.

Table 1. Peak assignments for FT-RAIRS.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>118 Å(^2)/molecule</th>
<th>73 Å(^2)/molecule</th>
<th>54 Å(^2)/molecule</th>
</tr>
</thead>
<tbody>
<tr>
<td>C–H stretch (–CH(_3))</td>
<td>2966, 2873</td>
<td>2967, 2871</td>
<td>2966, 2873</td>
</tr>
<tr>
<td>C–H stretch (–CH(_2))</td>
<td>2928, 2910</td>
<td>2930, 2859</td>
<td>2930, 2859</td>
</tr>
<tr>
<td>C–C bend of phenyl rings</td>
<td>1608, 1507, 1493, 1457</td>
<td>1609, 1508, 1491, 1457</td>
<td>1608, 1510, 1492, 1457</td>
</tr>
<tr>
<td>C–O–C stretch</td>
<td>1250</td>
<td>1252</td>
<td>1250</td>
</tr>
</tbody>
</table>
Absorbances corresponding to other parts of the molecule, such as C–H stretches arising from the methylene groups in the glycol chains and the C=phenyl ring bend, were mostly unaffected. As expected, these devices showed good hysteresis upon switching and ON/OFF ratios similar to those in devices studied previously (figure 12d–e). While monolayers transferred at 54 Å² per molecule gave very similar results (figure 12c), the devices showed reduced switching amplitude which can be attributed to increased steric interactions in the more tightly packed film. By contrast, monolayers transferred at 118 Å² per molecule showed significant changes throughout their FT-RAIRS spectra after Ti deposition (figure 12a), strongly suggestive of non-specific damage to the molecules. The switching characteristics of these devices confirmed this hypothesis. No clear current hysteresis was observed in the least closely packed monolayers. All of these observations indicate that, in tightly packed LB films, the bulky tetraarylmethane stoppers form a protective barrier that shields the functional portion of the molecules from damage during Ti deposition. These
observations provide further confirmation that bistable [2]rotaxane molecules remain functional during the MSTJ fabrication process and emphasize the importance of the bulky stoppers, as well as well-packed monolayers in the fabrication of MEDs of this type.

7. Conclusions and outlook

By integrating electrochemically switchable bistable [2]rotaxanes into nanowire crossbar arrays, large memory devices of unprecedented density were fabricated and successfully operated. Careful theoretical calculations and characterization of the rotaxane LB monolayers and solid-state devices gave insight into the structure of the molecules in the device format. The hysteretic changes in tunnelling current that form the basis of memory device operation were shown to originate directly from the electromechanical switching process of the bistable [2]rotaxanes. By correlating the kinetic and thermodynamic properties of the switching process in solution with that observed across many condensed environments, a universal switching mechanism was shown to be operable. By establishing this important
feedback loop between solution and device behaviour, we now believe it is possible to design new molecules for use as electronic components or in nanoelectromechanical systems using the tools of chemical synthesis, a goal that embodies one of the great promises of molecular nanotechnology.

The authors acknowledge the many stimulating discussions and intellectual contributions of our former and current colleagues whose names appear in the references. This research has been supported by grants from the Defense Advanced Research Projects Agency (DARPA) and both the Functional Engineered Nano Architectonics (FENA) Focus Center and the Center for Advanced Materials and Devices within the Microelectronics Advanced Research Corporation (MARCO).

References

