The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth’s accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45° and an impact speed within 10 per cent of the Earth’s escape velocity. All successful impacts—with or without pre-impact rotation—imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

Keywords: accretion; planet formation; origin of the Earth; origin of the Moon

1. Dynamics of terrestrial accretion

Solid planets are believed to form through the process of accretion, in which collisions between Sun-orbiting objects lead to growth of progressively larger bodies. It is envisioned that planetary accretion began within a circumsolar disc of gas (primarily hydrogen) and dust produced as a by-product of the collapse of a molecular cloud core to form the Sun. Observations of young stars suggest that the Sun’s gaseous nebula dispersed on a time scale \(\tau_{\text{neb}} \) of 10⁶ to 10⁷ years (e.g. Haisch et al. 2001). Isotopic studies indicate that the Earth’s accretion was more protracted, ending at approximately 50 Myr (e.g. Halliday & Kleine 2006).

(a) Processes

A common initial condition used by planet formation models is the minimum mass solar nebula (MMSN), constructed by spreading into a disc the mass contained in the current planets, augmented to bulk solar composition. In the

*robin@boulder.swri.edu

One contribution of 14 to a Discussion Meeting Issue ‘Origin and differentiation of the Earth: past to present’.
terrestrial planet region, an MMSN disc has a solid surface density $\sigma_{S,\text{MMSN}} = \sigma_{S,1\text{AU}}(1\text{AU}/a)^\alpha$ at semi-major axis a, with $\sigma_{S,1\text{AU}} \approx 7\text{ g cm}^{-2}$ and $\alpha = 3/2$, and a gas surface density $\sigma_g,\text{MMSN} = f\sigma_{S,\text{MMSN}}$, where $f \approx 240$ is the solar gas-to-solids ratio in the inner Solar System (Hayashi et al. 1985).

The processes responsible for the earliest stages of planetesimal growth from dust particles to kilometre-sized objects are actively debated. Small particles are strongly affected by interactions with the gas, which cause their mutual collision velocities to greatly exceed their escape velocities, precluding gravity-based accretion. Two proposed solutions invoke either non-gravitational sticking forces (e.g. Weidenschilling & Cuzzi 1993) or concentration of solids until gravitational instability causes direct collapse into larger objects (e.g. Ward 2000; Johansen et al. 2007).

Once kilometre-sized ‘planetesimals’ are formed, their growth rate is controlled by their collision rate, itself a function of the planetesimal masses and dispersion velocities v_{ran}. The mass accretion rate of a planetesimal of radius R and mass M due to collisions with smaller objects having a surface density σ_S is $\dot{M} \sim \pi R^2 \sigma_S \Omega [1 + (v_{\text{esc}}/v_{\text{ran}})^2]$, where $\Omega = \sqrt{GM_\odot/r^3}$ is the orbital frequency at radius r and M_\odot is the solar mass. The bracketed factor is the enhancement in the collisional cross-section due to gravitational focusing f_g, where $v_{\text{esc}} \equiv 2R\sqrt{2\pi \rho G/3}$ is the planetesimal’s escape velocity and ρ is its material density. The accretion time scale (or, alternatively, the time spent as a mass M object) is $\tau_{\text{acc}} \equiv M/M_\odot \sim (\Omega f_g)^{-1}(\rho R/\sigma_S)$. Two limiting growth regimes occur: for $v_{\text{ran}} \geq v_{\text{esc}}$, focusing is unimportant ($f_g \sim \text{unity}$) and $\tau_{\text{acc}} \sim \Omega^{-1}(\rho R/\sigma_S)$; while for $v_{\text{ran}} \ll v_{\text{esc}}, f_g \gg 1$ and $\tau_{\text{acc}} \sim \Omega^{-1}v_{\text{ran}}^2/(8G\sigma_SR)$. In the former, the relative radii of growing objects converge with time because $\tau_{\text{acc}} \propto R$ and growth is ‘orderly’; while in the latter mode, $\tau_{\text{acc}} \propto 1/R$, and so the larger objects get, the faster they grow, causing their relative radii to diverge and ‘runaway’ growth.

Relative velocities are generally increased by gravitational scattering and damped by collisions. The balance of these two processes causes the characteristic dispersion velocity to be comparable to v_{esc} for the size of object containing most of the swarm’s mass. In addition, dynamical friction between objects of different sizes damps the velocities of the large objects and excites the velocities of the small objects. A distribution of equal-sized particles will have $v_{\text{ran}} \sim v_{\text{esc}}$ and so initial growth is slow and orderly, but with time some larger particles form. For a surface density of large particles that is much smaller than the small particle surface density, the small body population causes v_{ran} to be much smaller than the escape velocity of the largest objects, so that the larger objects grow in the runaway regime. Near 1 AU in an MMSN disc, runaway growth allows kilometre-sized planetesimals to accrete into $10^{-3}M_\oplus$ planetary embryos in only about 10^4 years (e.g. Kenyon & Bromley 2006).

Ultimately, runaway growth is self-limiting. As an increasing fraction of the total mass is contained in large objects, the supply of small bodies that can be accreted is diminished. Viscous stirring by the large objects begins to dominate over that of the small bodies (e.g. Goldreich et al. 2004), and dynamical friction by the reduced small particle population is weakened, leading to increased dispersion velocities. An increasing v_{ran} and a decreasing σ_S cause the growth of the large objects to slow to an orderly rate in which their relative sizes converge with time. This ‘oligarchic’ growth stage (e.g. Thommes et al. 2003) is typified by a system of
similarly sized large embryos that each dominates their own accretional annulus within the disc. In the limit that an oligarch accretes all of its annulus’ material, its mass is the isolation mass, \(M_{\text{iso}} \equiv 2\pi a \Delta a \sigma_S \). For an annulus width \(\Delta a \) that scales with the mutual Hill radius of neighbouring oligarchs so that \(\Delta a = ba(2M_{\text{iso}}/3M_\odot)^{1/3} \) (i.e. shear-dominated oligarchy; Goldreich et al. 2004),

\[
M_{\text{iso}} \sim 0.09 M_\oplus \left(\frac{b}{10} \right)^{3/2} \left(\frac{\sigma_{S,1 \text{ AU}}}{7 \text{ g cm}^{-2}} \right)^{3/2} \left(\frac{a}{1 \text{ AU}} \right)^{3-3\alpha/2},
\]

and the time to form such an object (assuming that small objects are stirred by the oligarchs and damped by aerodynamic gas drag) is (Kokubo & Ida 2002)

\[
t_{\text{iso}} \sim 0.4 \times 10^6 \text{ year} \left(\frac{7 \text{ g cm}^{-2}}{\sigma_{S,1 \text{ AU}}} \right)^{9/10} \left(\frac{a}{1 \text{ AU}} \right)^{(9\alpha+16)/10} \left(\frac{b}{10} \right)^{1/10}.
\]

For an MMSN disc, lunar-to-Mars mass oligarchs (0.01–0.1 \(M_\oplus \)) accrete in the terrestrial region on time scales shorter than the expected nebular lifetimes, and a disc containing a greater solid mass than the MMSN would produce more massive oligarchs on still shorter time scales.

Once terrestrial objects achieve masses greater than or about \(10^{-2} M_\oplus \), their density-wave interactions with the gas nebula become important, depending on the amount of gas still present at that time. The gravitational interactions between an embryo and the spiral density waves it induces in an accompanying gas disc damp the embryo’s orbital eccentricity and inclination (e.g. Ward 1998) and cause a secular decay of its semi-major axis \(a \), through an effect known as type I migration (Ward 1986). Both effects become more important as an embryo grows. The type I migration time scale \(\tau_1 \equiv a/\dot{a} \) for a mass \(M_P \) embryo is

\[
\tau_1 \sim \frac{1}{C_{a,Q}} \left(\frac{M_\odot}{M_P} \right) \left(\frac{M_\odot}{r^2 \sigma_G} \right) \left(\frac{c}{rQ} \right)^2,
\]

where \(C_a \) is a constant, approximately 4.4 for an MMSN disc (Tanaka et al. 2002); \(\sigma_G \) is the gas surface density; and \((c/rQ) \) is the disc aspect ratio. The time scale for density-wave damping to circularize an orbit is shorter, with \(\tau_{\text{ecc}} \sim (c/rQ)^2 \tau_1 \) and \((c/rQ) \sim 0.05(a/1 \text{ AU})^\beta \) with \(\beta = 1/4 \) commonly invoked.

Eventually the system of oligarchs destabilizes, their mutual interactions drive their dispersion velocities to values comparable with their escape velocities, and the system enters a chaotic final stage lasting for approximately \(10^7–10^8 \) years and dominated by mutual oligarch collisions. For a gas-free disc, this transition occurs when the oligarchs contain roughly half of the total solid surface density (Goldreich et al. 2004), which occurs after approximately \(10^6 \) years for an MMSN disc and at earlier times for more massive discs (Kenyon & Bromley 2006). If a portion of the gas nebula remains at this time, destabilization of the oligarchs and the onset of the large impact phase may be delayed by density-wave damping until \(\sigma_G < \sigma_S \) (Goldreich et al. 2004).

\[(b)\] Example simulations

Numerical simulations of the accretion of planetesimals into planets often rely upon a hybrid approach (e.g. Weidenschilling et al. 1997; Kenyon & Bromley 2006), in which a statistical treatment of small particles is combined with a

Phil. Trans. R. Soc. A (2008)
discrete treatment for the large objects. Figure 1 shows the time evolution of oligarchs in a Kenyon & Bromley (2006) simulation that begins with 5 km planetesimals, assumes that collisions result in mergers, and evolves bodies with direct \(N \)-body simulation once their masses exceed approximately \(10^{-2} M_{\oplus} \). Runaway growth leads to the first object achieving this mass in only about \(10^4 \) years. The chaotic growth stage is clearly seen in figure 1 as the oligarchs perturb one another into crossing orbits. After \(10^8 \) years, three planets between 0.4 and 2 AU each contain more than \(0.5 M_{\oplus} \), while three others are less than \(0.07 M_{\oplus} \) (figure 1b).

Alternatively, a pure \(N \)-body approach can be used to model the final stage of oligarch accretion into planets. The first such models (Chambers & Wetherill 1998; Agnor et al. 1999; Chambers 2001) considered approximately 20–150 initial embryos and assumed a gas-free disc. Recently, Kokubo et al. (2006) performed approximately 200 similar calculations, whose results were generally consistent with those of the earlier works. An initial MMSN disc between 0.5 and 1.5 AU accretes into 2–5 major planets, with the two largest having masses \(1.27 \pm 0.25 M_{\oplus} \) and \(0.66 \pm 0.23 M_{\oplus} \), and semi-major axes \(0.75 \pm 0.20 \) AU and \(1.12 \pm 0.53 \) AU (Kokubo et al. 2006), roughly comparable to those of the Earth and Venus (0.8\(M_{\oplus} \) and \(a=0.72 \) AU). However, the simulated planets have eccentricities and inclinations that are typically much higher than those of the Earth and Venus. Two effects not included in most \(N \)-body simulations could result in more circular final planet orbits: dynamical friction with background planetesimals (e.g. Chambers & Wetherill 1998) and/or the density-wave damping with a remnant of solar nebular having \(\sigma_G \sim 10^{-4} \)–\(10^{-3} \sigma_G, \text{MMSN} \) (Agnor & Ward 2000). Both solutions to the ‘high-eccentricity problem’ appear promising. \(N \)-body simulations that consider an initial system with half its total mass in approximately \(0.1 M_{\oplus} \) embryos and half in approximately \(10^{-2} M_{\oplus} \) planetesimals yield some systems.
whose angular momentum deficits (a measure of how dynamically excited a system is compared to one with circular, coplanar orbits) are comparable to that of the current inner Solar System, which has been attributed to more effective dynamical

Figure 2. Composition of final planets from simulations by (a) O’Brien et al. (2006, with diameters proportional to the planet diameter) and (b) McNeil et al. (2005). Colour bars indicate the original radial location in AU of each mass component. The O’Brien et al. simulations are the highest-resolution N-body models performed to date; those shown in (a) consider an initial disc with \(\sigma_{S,1\,\text{AU}} = 8 \, \text{g cm}^{-2} \), include Jupiter and Saturn with their present eccentric orbits, and find substantial radial mixing of material inside 2 AU. The McNeil et al. simulations in (b) consider a more massive initial disc with \(\sigma_{S,1\,\text{AU}} = 21 \, \text{g cm}^{-2} \), and include type I migration with \(C_\alpha = 3.1 \) and \(\{c/r\Omega\}_{1\,\text{AU}} = 0.07 \) (see equation (1.3)) by a gas nebula with an exponential decay time scale of \(\tau_{\text{neb}} = 0.5 \) (run C9), 1 (run C3) and 2 (run C6) Myr. Longer \(\tau_{\text{neb}} \) leads to more migration and loss to collision with the Sun. While each case initially had approximately \(5M_\oplus \) of solid material in the \(0.5-1.5 \) AU region, the final mass in this region is \(2.9M_\oplus, 2.6M_\oplus \) and \(1.7M_\oplus \) for runs C9, C3 and C6, respectively. In the case with the most migration (C6), final embryos near 1 AU are composed primarily of material that originated outside 2 AU.

whose angular momentum deficits (a measure of how dynamically excited a system is compared to one with circular, coplanar orbits) are comparable to that of the current inner Solar System, which has been attributed to more effective dynamical
friction (O’Brien et al. 2006). Nagasawa et al. (2005) considered isolation mass objects distributed from 0.5 to 3 AU subject to density-wave damping, and tracked the system as the solar nebula depletes and the secular resonance associated with Jupiter’s orbital apsidal precession (ν_5) ‘sweeps’ through the terrestrial planet region. Their simulations produced final terrestrial systems with appropriate masses and eccentricities if the nebula depletion time scale exceeds 3 Myr (Nagasawa et al. 2005).

(c) Implications

During late stage accretion, large impacts occur with random orientation and yield rapid planetary spin rates (Agnor et al. 1999). The last large impacts onto Earth-sized planets occur at an average time of 25–50 Myr depending on model specifics (Agnor et al. 1999; Nagasawa et al. 2005; O’Brien et al. 2006). Median times for the Earth analogues to reach 50 per cent (90 per cent) of their final mass are 10–20 (40–50) Myr (Chambers 2001; O’Brien et al. 2006). Such values are in reasonable agreement with the age of the Earth inferred from isotopic systems (e.g. Halliday & Kleine 2006).

Substantial radial mixing of disc material is expected during final planet assembly. Figure 2 shows the provenance of material that comprises the final planets in example simulations. For their final planets, O’Brien et al. (2006) derived a mass-weighted median value $\delta a \sim 0.5a$, where δa is the difference between an embryo’s initial semi-major axis and that of the final planet into which it is accreted. This implies that a planet at 1 AU on average comprises material originally located between 0.5 and 1.5 AU. Figure 2a also reflects a stochastic element to the final compositions: they do not always vary predictably with semi-major axis (e.g. the innermost planet in run EJS2 contains the largest fraction of outer disc material), nor do planets at similar final radii in different simulations have the same composition. A key implication is that the Moon-forming impactor is unlikely to have had an identical composition to the proto-Earth.

(d) Open issues

In the past decade, a relative consensus has developed concerning many of the basic traits of post-planetesimal growth, with a variety of methods predicting similar accretion stages (runaway growth → oligarchic growth → chaotic growth), growth time scales and final planetary system properties. However, these commonalities may be in part due to the similar initial conditions and assumptions made by most models. For example, nearly all simulations neglect fragmentation. During oligarchic growth, stirring by the oligarchs causes collisions between small planetesimals to occur at velocities that greatly exceed their escape velocities, so that substantial fragmentation is expected. As fragmentation produces larger numbers of small particles, collisional damping and gas drag become increasingly effective and can lead to faster overall growth rates (e.g. Goldreich et al. 2004). However, it is possible that the formation of gaps in the small particle population by the growing embryos might frustrate or preclude such effects (e.g. Rafikov 2001).

Another pervasive assumption is the starting condition of an MMSN disc, which represents the minimum amount of solar-composition material necessary to produce the current planetary masses. A greater total mass in disc solids may
be needed, e.g. recent models for the accretion of Jupiter’s core require disc solid
surface densities enhanced by factors of at least two to three relative to the
MMSN to produce Jupiter in 1–5 Myr (e.g. Hubickyj et al. 2005). Similar
enhancements could be necessary to produce Uranus and Neptune (e.g. Goldreich et al. 2004).

Type I migration has only recently begun to be incorporated into terrestrial
accretion models (e.g. McNeil et al. 2005). Type I decay is important for objects
whose migration time scale τ_1 is comparable to or shorter than the nebular lifetime τ_{neb}. From equation (1.2) we expect isolation mass objects throughout the
terrestrial planet region to form in less than 10^6 years in an MMSN disc, and faster
in more massive discs. Given the type I time scale in equation (1.3), and setting
$\tau_{\text{neb}} \geq \tau_1(M_{\text{iso}})$ with M_{iso} from equation (1.1), gives an estimated critical nebular
lifetime for which migration of isolation mass objects becomes significant,

$$\tau_{\text{neb}} \geq 1.8 \times 10^6 \text{ year} \left(\frac{10}{b}\right)^{3/2} \left(\frac{4.4}{C_a}\right) \left(\frac{240}{f}\right) \left(\frac{7 \text{ g cm}^{-2}}{\sigma_{S,1 \text{ AU}}}\right)^{5/2} \left(\frac{\{c/r\Omega\}_{1 \text{ AU}}}{0.05}\right)^2,$$

where $\{c/r\Omega\}_{1 \text{ AU}}$ is the disc aspect ratio at 1 AU and $\sigma_{G,1 \text{ AU}} = \sigma_{S,1 \text{ AU}}$. Median nebular lifetimes of 3 Myr (Haisch et al. 2001) imply substantial migration of
terrestrial oligarchs in an MMSN disc. Solar-composition discs more massive than
the MMSN will experience greater migration, because increasing the disc mass
increases the isolation mass (with $M_{\text{iso}} \propto \sigma_S^{3/2}$) and the background gas surface
density, with both acting to hasten type I decay, with $\tau_1^{-1}(M_{\text{iso}}) \propto \sigma_G M_{\text{iso}} \propto f \sigma_S^{5/2}$. For example, migration of oligarchs in a solar-composition disc with $\sigma_S = 3 \sigma_{\text{MMSN}}$
would be substantial for $\tau_{\text{neb}} \geq 10^6$ years.

It is possible that type I migration was much less effective than nominal rates
imply (e.g. Paardekooper & Mellema 2006). Alternatively, the loss of objects due
to migration could have been offset by a larger initial mass reservoir, allowing
objects originally outside the terrestrial region to migrate inwards and be ‘saved’
as the nebula dissipates (McNeil et al. 2005). Inward migration would imply that
a substantial fraction of the final terrestrial planets originated in the asteroid
belt region (figure 2b), a cosmochemically important implication that merits
further consideration.

2. The Moon-forming impact

The leading theory for the Moon’s origin is that it formed as a result of an impact
between a Mars-sized object and the young Earth (Hartmann & Davis 1975;
Cameron & Ward 1976). The lunar-forming impact was probably also the last
major event in the Earth’s accretion: substantial addition of material after the
Moon-forming impact would tend to make the Moon too iron rich (Canup 2004a),
and even if such later accretion was limited to the Earth, it would probably cause the Earth’s O-isotope composition to diverge from that of the Moon (e.g. Wiechert et al. 2001).

Phil. Trans. R. Soc. A (2008)
(a) Constraints and methods

A successful lunar-forming impact must account for (i) the current Earth–Moon system’s angular momentum, $L_{EM}=3.5 \times 10^{41}$ g cm2 s$^{-1}$, (ii) a proto-lunar disc whose mass and angular momentum are sufficient to produce a Moon of mass $M_L=0.012M_\oplus$ outside the Earth’s Roche limit, and (iii) a bulk lunar mass abundance of elemental iron in the few to 10 per cent range (e.g. Canup 2004a and references therein).

The Earth–Moon system’s angular momentum has decreased over its history due to solar interactions, but its initial value would have been within a few to 10 per cent of its current value (e.g. Canup 2008). If the target proto-Earth and impactor of mean density ρ were not rotating prior to impact, the angular momentum delivered by an impactor of mass $M_i=\gamma M_T$ is

$$L_{col} = b'M_T^{5/3}f(\gamma)\sqrt{\frac{2G}{4\pi\rho/3^{1/3}}} \left(\frac{v_{imp}}{v_{esc}}\right) \approx 1.3L_{EM}b'(\frac{M_T}{M_\oplus})^{5/3} \left(\frac{\gamma}{0.1}\right) \left(\frac{v_{imp}}{v_{esc}}\right),\quad (2.1)$$

where $b'\equiv\sin(\xi)$ is the scaled impact parameter; ξ is the angle between the surface normal and the impact trajectory (so that a grazing impact has $b'=1$ and $\xi=90^\circ$); M_T is the total colliding mass (impactor+target); γ is the impactor-to-total mass ratio, $f(\gamma) \equiv (1-\gamma)^{1/3}+(1-\gamma)^{1/3}$; v_{imp}/v_{esc} is the ratio of the impact velocity to the mutual escape velocity; and $v_{imp}^2 = v_{esc}^2 + v_\infty^2$, where v_∞ is the relative velocity of the target and impactor at large separation. Thus, the requirement that an impact produces a system with the correct angular momentum (i.e. $L_{col} \approx L_{EM}$) defines a multidimensional parameter space in b', γ and v_{imp}, within which cases that also give the correct lunar mass and low Fe abundance must be identified. Consideration of pre-impact rotation in the proto-Earth and/or the impactor broadens the potential parameter space further.

Hydrodynamical models of giant impacts have primarily used smooth particle hydrodynamics or SPH (e.g. Benz et al. 1989; Canup & Asphaug 2001; Canup 2004a, 2008). SPH represents matter by spherically symmetric particles whose individual evolutions due to gravity, pressure forces and shock dissipation are calculated as a function of time. The Lagrangian formulation of SPH is ideally suited to tracking mixed materials (iron versus silicate) and particle histories (e.g. whether the mass in the proto-lunar disc originated from the impactor or the target). Recently, a three-dimensional Eulerian model has also been applied to giant impacts (Wada et al. 2006). Advantages of grid-based methods over SPH include the potential for high spatial resolution in the orbiting disc, a superior treatment of shocks and improved estimates of volatile loss after the impact. However, the Wada et al. (2006) simulations did not consider mixed materials (so that mantle versus core material are not distinguished), and they are computationally intensive. The single Wada et al. (2006) simulation using both an equation-of-state appropriate for rocky materials and a grid large enough to track the orbiting material found a predicted satellite mass similar to that determined using SPH for similar collisions, although further comparisons are clearly warranted.
Figure 3. A potential lunar-forming impact (run 82 from Canup 2008) in which a $0.13M_{\oplus}$ impactor collides with a $0.89M_{\oplus}$ target with $b' = 0.7$ ($\xi = 45^\circ$) and $(v_{\text{imp}}/v_{\text{esc}}) = 1.05$ (or $v_{\infty} \approx 3$ km s$^{-1}$). Both objects are differentiated and contain 70 per cent forsterite and 30 per cent iron by mass, described by the M-ANEOS equation of state (Melosh 2007). Prior to the collision, the target has a retrograde (i.e. in the opposite rotational sense as the impact) spin about the \hat{z} axis with a period of 18 h. (a–e) Snapshots at progressive times looking down on the plane of the impact, with distances shown in units of 10^3 km (note the changes in scale between different frames). Colour scales with particle temperature in kelvin, with red particles having $T = 6440$ K. (a) $t = 0.32$ h, (b) $t = 0.86$ h, (c) $t = 2.2$ h, (d) $t = 10.3$ h, and (e) $t = 31.3$ h. (e) The final bound planet–disc system has an angular momentum equal to that of the current Earth–Moon system and contains $1.01M_{\oplus}$ after accounting for escaping material. (f) A close-up of the final thermal state of the planet. The partial red ring of high temperature material in the planet’s interior is iron from the impactor’s core that has accreted onto the Earth’s core.
(b) Properties of lunar-forming impacts

Figure 3 shows an example SPH simulation of a potential Moon-forming impact (Canup 2008). In the hour following an oblique, low-velocity (i.e. \(v_{\text{imp}}/v_{\text{esc}} \approx 1 \)) collision, the impactor material that has grazed past the target initially forms an elongated structure that is nearly in line with its original trajectory (figure 3b). As this material undergoes Keplerian motion, it is ‘wound up’ into a structure coarsely resembling a trailing spiral arm (figure 3c). Gravitational torques across this structure allow outer portions to gain angular momentum and achieve orbit at the expense of inner portions, which recollide with the Earth. The inner portions of the arm (which consist primarily of the impactor’s iron core) often recoalesce into a large clump (figure 3d) that re-impacts the planet, removing most of the impactor’s iron from orbit. In this case, the orbiting disc (figure 3e) contains \(1.4 M_L \), and is composed of 7 per cent iron and 85 per cent impactor material by mass. Of the orbiting particles, 50 per cent have orbital periapses outside the Earth’s Roche limit.

The final disc in figure 3 contains an approximately \(0.5 M_L \) intact clump that would probably be the lunar precursor. In most cases, the analogue to this clump has its periapsis within the Roche limit so that it is tidally disrupted within the first 20 hours or so after the initial impact. \(N \)-body simulations of the subsequent accretion of the Moon find that discs with or without large initial clumps typically produce a single satellite just outside the Roche limit in less than a year (e.g. Kokubo et al. 2000). However, such models may greatly underestimate the lunar accretion time scale because they neglect the disc’s thermal evolution (e.g. Canup 2004b).

The Moon-forming impact delivers prodigious energy to the Earth, with \(E_{\text{imp}}/M_\oplus \sim 5 \times 10^{10} \text{ erg g}^{-1} (\gamma/0.1)(v_{\text{imp}}/10 \text{ km s}^{-1})^2 \), which is much greater than the latent heat of fusion for rock, \(l \sim \text{few} \times 10^9 \text{ erg g}^{-1} \). Figure 4 shows the initial and final temperatures within the target proto-Earth from the simulation in figure 3. The initial temperatures were generated by applying an adiabat with a 2000 K surface temperature to the uncompressed proto-Earth, which was subsequently settled with SPH to achieve a compressed hydrostatic state (as in the ‘warm start’ cases in Canup 2004a). Even when the target’s interior is initially subsolidus, most of the proto-Earth is heated to a mixed solid–melt state, with material in the outer approximately \(10^3 \) km of the proto-Earth melted completely. Extrapolation of the characteristic temperature increases in figure 4 to a more realistic starting condition of a proto-Earth at or above the solidus before the Moon-forming impact (e.g. Pritchard & Stevenson 2000) implies extensive complete melting throughout the Earth’s mantle.

General trends in impact outcome as a function of \(b' \), \((v_{\text{imp}}/v_{\text{esc}}) \) and \(\gamma \) have been observed (e.g. Canup & Asphaug 2001; Canup 2004a). For oblique, high-velocity impacts (with \(b' > 0.7 \) and \((v_{\text{imp}}/v_{\text{esc}}) \geq 1.2 \)), most of the impactor escapes and little mass is left in an orbiting disc. For low-velocity impacts (i.e. \((v_{\text{imp}}/v_{\text{esc}}) \leq 1.1 \)), the disc mass generally increases as \(b' \) is increased, because increasing \(b' \) leads to a greater fraction of the impactor grazing past the target where it can most effectively be torqued into bound orbit. While collisions with \(b' > 0.75 \) produce massive discs, they are too iron rich to yield the Moon. For a fixed \(b' \) and \((v_{\text{imp}}/v_{\text{esc}}) \), increasing the impactor mass fraction \(\gamma \) typically increases the final disc mass.
Figure 5 shows results of impacts between rotating (Canup 2008) and non-rotating (Canup 2004a) objects that produced discs containing less than 10 per cent iron by mass. With or without pre-impact rotation, successful lunar-forming cases require \((v_{\text{imp}}/v_{\text{esc}}) \leq 1.1\) and \(0.65 < b' < 0.75\). Cases that produce sufficiently massive discs to yield the Moon have discs that are derived primarily (60–90%) from the impactor’s mantle (figure 5b). A target proto-Earth with a pre-impact retrograde rotation (i.e. in the opposite rotational sense to the impact itself; figure 5, red circles) allows for somewhat larger impactors (up to approx. \(0.2M_\oplus\)) and provides an improved match with the Earth–Moon system’s angular momentum compared to the non-rotating cases (figure 5, black circles). A prograde rotating target (figure 5, blue circles) results in discs that are not massive enough in nearly all cases with \(L_{\text{col}} \sim L_{\text{EM}}\). An impact-formed Moon argues against the Earth having had a low-obliquity, rapid prograde rotation before the lunar-forming event.

(c) Implications and open issues

A successful lunar-forming impact—defined as one that produces a sufficiently massive and iron-depleted disc to yield the Moon, a final planet mass of approximately \(M_\oplus\), and a final system angular momentum of approximately \(L_{\text{EM}}\)—requires (i) a differentiated impactor containing between \(0.11M_\oplus\) and \(0.2M_\oplus\), (ii) a relatively low-velocity impact, with \(v_\infty < 4\) km s\(^{-1}\), and (iii) an impact angle approximately between 40° and 50°. The giant impactor mass is similar to those expected for late stage oligarchs, and the impact velocity upper limit is comparable to the median encounter velocities of embryo–embryo collisions seen in accretion simulations (O’Brien et al. 2006). Because 45° is the most probable impact angle for randomly oriented impacts, approximately 15 per cent of all collisions would have 40° \(\leq \xi \leq 50°\).

An impactor origin of the majority of proto-lunar material is a universal prediction of all successful impact simulations, and one that must ultimately be reconciled with the identical O-isotope compositions of the Earth and the Moon (e.g. Wiechert et al. 2001). This appears to require either that the impactor and proto-Earth had identical compositions (unlikely, given the compositional variation predicted by accretion models) or that extensive mixing between proto-lunar and proto-Earth material after the impact but prior to the Moon’s formation allowed compositions to equilibrate (Pahlevan & Stevenson 2007). The mixing scenario seems the most promising, but requires the Moon’s formation to be delayed by a hundred years or more after the impact. Improved models of proto-lunar disc evolution and lunar accretion will be needed to assess whether this is plausible.

3. Summary

Terrestrial accretion dynamics is a mature field whose fundamentals are well developed and understood. However, some key effects have yet to be fully incorporated into the most recent models, including fragmentation, density-wave damping and type I migration. Of particular importance is the potential for substantial radial migration and loss of terrestrial proto-planets to collision with
the Sun, which appears probable for nominal migration rates and nebular lifetimes. Migration would weaken the link between the planetary objects we see today and the original provenance of the material that comprises them.

That the final phase in the growth of terrestrial planets was dominated by giant impacts has become well accepted in the decades since its first demonstration (Wetherill 1985). As the last major event in the Earth's accretion, the Moon-forming impact is dynamically a relatively well-constrained problem. Successful simulations that can reproduce the current Earth–Moon system invoke impactor sizes and velocities predicted to be common during late stage terrestrial accretion. Models of the subsequent formation of the Moon from the proto-lunar disc are less well developed, and further work is needed to describe the coupled thermal and dynamical evolution of the disc and the Moon's initial thermal state. This should enable improved quantitative compositional and geophysical predictions for an impact-formed Moon, and its expected similarities and dissimilarities with the Earth.

I thank William Ward, Amy Barr and the reviewers for their helpful comments, and Scott Kenyon, Douglas McNeil and David O'Brien for providing me with figures from their publications. This work was supported by NASA's Origins of Solar Systems Program.

Figure 4. Temperature in the proto-Earth as a function of depth (where r is the distance from the planet’s centre and $R_E=6378$ km) for the impact simulation shown in figure 3. Iron and silicate particles in the initial, pre-impact proto-Earth are shown as red and light blue points. Dark red and blue points show the original proto-Earth material at the simulation’s final time step (31 h), while dark blue points (upper right) are silicate particles originating from the impactor that are accreted by the proto-Earth. The great majority of the impactor’s iron core is accreted by the proto-Earth, and this material has extremely high predicted post-impact temperatures (greater than 15 000 K) that are above the scale of this plot. Shown in black are example solidus and liquidus curves for a three-component (MgSiO$_3$, MgO and FeO) lower mantle magma ocean model (Solomatov & Stevenson 1993).
Figure 5. Results from SPH impact simulations that produced iron-depleted discs containing less than 10 per cent iron by mass (from Canup 2004a, 2008). Colour indicates pre-impact rotation state (red, retrograde target; black, no pre-impact spin; blue, prograde target), while symbol size scales with impactor size (small, $\gamma=0.11$; medium, $\gamma=0.13$; large, $\gamma=0.15$; extra large $\gamma=0.20$).

(a) Predicted maximum satellite-to-planet mass ratio q, assuming no mass escapes from the proto-lunar disc (Ida et al. 1997) versus the final angular momentum of the bound planet-disc system L_F, in units of the Earth-Moon system’s angular momentum L_{EM}. The current Earth-Moon system is indicated by the pale grey line (with $1 \leq L_F/L_{EM} \leq 1.1$ shown to allow for up to 10 per cent angular momentum loss over the system’s history due to solar interactions). The largest q value shown reflects a disc mass of $2.1M_L$ produced by the rather extreme case of an impact into a rapidly retrograde rotating target with a 4.1 h period prior to the lunar-forming collision. (b) Predicted maximum satellite-to-planet mass ratio versus the fraction of the disc mass that originates from the impactor.

References

Phil. Trans. R. Soc. A (2008)

