OPINION PIECE

The future of the Large Hadron Collider and CERN

BY ROLF-DIETER HEUER*

CERN, 1211 Geneva 23, Switzerland

This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron–proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

Keywords: Large Hadron Collider; particle physics; CERN

1. The Large Hadron Collider

(a) The physics

The Large Hadron Collider (LHC) [1] is primarily a proton–proton collider (figure 1), with a design centre-of-mass energy of 14 TeV and nominal luminosity of 10^{34} cm$^{-2}$ s$^{-1}$, but it will also be operated in heavy-ion mode. The high 40 MHz proton–proton bunch-crossing rate and the tens of interactions per crossing result in an enormous challenge for the experiments and for the collection, storage and analysis of the data.

By colliding unparalleled high-energy and high-intensity beams, the LHC is opening up previously unexplored territory at the TeV scale in great detail, allowing the experiments to probe deeper inside matter and providing further understanding of processes that occurred very early in the history of the Universe.

Of central importance to the LHC is the elucidation of the nature of electroweak symmetry breaking, for which the Higgs mechanism and the accompanying Higgs boson(s) are presumed to be responsible. In order to make significant inroads into the Standard Model Higgs boson search, sizeable integrated luminosities of several per femtobarn (fb$^{-1}$) are needed. However, even with 1 fb$^{-1}$ per experiment, discovery of the Standard Model Higgs boson is still possible in certain mass regions beyond the lower limit of 114.4 GeV set by direct searches at the Large

*rolf.heuer@cern.ch

One contribution of 15 to a Discussion Meeting Issue ‘Physics at the high-energy frontier: the Large Hadron Collider project’.
Electron–Positron Collider, LEP2. At the initial LHC centre-of-mass energy of 7 TeV and with 1 fb$^{-1}$ per experiment, combining the results from ATLAS and CMS (Compact Muon Solenoid) would provide a 3σ sensitivity to a Standard Model Higgs boson mass in the range 135–475 GeV, and will exclude the Standard Model Higgs boson between 120 and 530 GeV at 95% confidence level (CL). Combining the results from ATLAS and CMS at 7 TeV centre-of-mass energy and assuming about 10 fb$^{-1}$ per experiment would exclude at 95% CL the mass range from 600 GeV down to the lower limit set by LEP2, and would also provide a 3σ sensitivity to a Standard Model Higgs boson in the same mass range.

The reach for new physics at the LHC is considerable already at LHC start-up. In supersymmetry (SUSY) theory, because of their high production cross sections, squarks and gluinos can be produced in significant numbers even at modest luminosities. This would enable the LHC to start probing the nature of dark matter. The LHC discovery reach for SUSY particles is up to a mass of about 700 GeV for 1 fb$^{-1}$ per experiment at 7 TeV centre-of-mass energy.

The discovery reach for new heavy bosons Z' and W' is about 1.6 TeV and 2.1 TeV, respectively, for 1 fb$^{-1}$ per experiment at 7 TeV centre-of-mass energy.

The LHC will also provide information on the unification of forces, the number of space–time dimensions and matter–antimatter asymmetry. Operating in the heavy-ion collision mode, the LHC will probe the formation of the quark–gluon plasma at the origin of the Universe.

Phil. Trans. R. Soc. A (2012)
First collisions at the LHC were recorded by the experiments on 23 November 2009 at a centre-of-mass energy of 900 GeV. During this first physics run at the end of 2009, the LHC accelerator performed exceptionally and the readiness of the experiments and the Computing Grid was excellent, resulting in impressive preliminary results provided already at an open seminar held at CERN on 18 December 2009 and the prompt publication of the first physics results by year’s end.

First LHC beams for 2010 were available on 27 February for commissioning the accelerator with beam. This was followed by first physics collisions at 7 TeV centre-of-mass energy on 30 March (figure 2) and by the first physics runs, with a stronger focusing at the interaction points. During the 2009 and 2010 LHC physics runs, data have been collected at 900 GeV, 2.36 TeV and 7 TeV centre-of-mass energies with increasing instantaneous luminosities.

The main LHC achievements for 2010 can be summarized as follows:

— Excellent performance of the LHC machine was seen for both proton and Pb-ion beams. Beam operation availability was 65 per cent on average. Peak instantaneous luminosities of 2×10^{32} cm$^{-2}$ s$^{-1}$ were attained for proton–proton collisions, which were a factor of two above the 2010 goal and resulted in almost 50 pb$^{-1}$ of integrated luminosity delivered to the

Figure 2. First collisions at 7 TeV centre-of-mass energy. (Online version in colour.)

(b) *Large Hadron Collider operations*

Phil. Trans. R. Soc. A (2012)
experiments. Following a short 4-day switch-over to Pb-ion beams, peak luminosities of 3×10^{25} cm$^{-2}$ s$^{-1}$ were attained for Pb–Pb collisions, with almost 10 μb$^{-1}$ of integrated luminosity delivered to the experiments.

— The experiments took data of excellent quality and with high efficiency. The physics analyses re-measured the science of the Standard Model of particle physics. In many instances, the LHC experiments have set limits for physics beyond the Standard Model, superseding those set at the Tevatron, thus taking the LHC’s first steps into new territory. As a result, 54 physics papers based on the 2010 data were published and more than 1140 conference presentations were made by the LHC experiments.

— The performance of the LHC Computing Grid was also outstanding, exceeding the design bandwidth and allowing a very fast reconstruction and analysis of the data.

At the LHC Performance Workshop in Chamonix, held at the end of January 2011, the current state of the LHC was evaluated and presented, leading subsequently to the following decisions:

— The LHC will be operated during 2011 and 2012, with target integrated luminosities of 1 fb$^{-1}$ by the end of 2011 at 3.5 TeV/beam and of several fb$^{-1}$ by the end of 2012. Heavy-ion runs are scheduled at the end of both years, each of about four weeks’ duration. A technical stop of about three months around Christmas 2011 is needed.

— This extended operations period will be followed by a long shutdown (of about 20 months beam-to-beam) starting at the end of 2012 to repair and consolidate the inter-magnet copper stabilizers (splices) to allow for a safe operation up to 7 TeV/beam for the lifetime of the LHC.

— In the shadow of the inter-magnet copper stabilizer work, the installation of the pressure rupture discs (DN200) will be completed and around 20 magnets that are known to have problems for high energy will be repaired or replaced. In addition, the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) consolidation and upgrade work will be carried out.

— During this shutdown, the collimation system will also be upgraded at point 3.

— The experiments will use the shutdown to implement a programme of consolidation, improvements and upgrades.

The coming years will lay the foundation for the next decades of high-energy physics at the LHC. The LHC research programme until around 2030 is determined by the full exploitation of its physics potential, consisting of the design luminosity and the high-luminosity upgrade (HL-LHC). Moreover, superconducting higher-field magnets are being developed for a higher-energy proton collider (HE-LHC), if necessitated by the physics. These initiatives will position CERN as the laboratory at the energy frontier.

The strategy for the LHC for the coming years is the following:

— Exploitation of the LHC up to design conditions will be encouraged, and optimization of the schedule in the light of running experience to maximize the physics potential.
— The LHC will be prepared for a long operational lifetime through appropriate modifications and consolidation to the machine and detectors and through the build-up of an adequate spares inventory.
— In the years 2015, 2016 and 2017, the LHC will be operated towards 7 TeV/beam with increased intensities and luminosities.
— In 2017/2018, a long shutdown is scheduled to connect LINAC4 (http://linac4.web.cern.ch/linac4/), to complete the PS Booster energy upgrade, to finalize the collimation system enhancement and to install LHC detector improvements. After this shutdown, a further period of 3 years of LHC operation at 7 TeV/beam and at least the design luminosity is planned (with short technical stops around the end of each year).
— The ambitious longer-term plans include a total integrated luminosity of the order of 3000 fb$^{-1}$ by the end of the life of the LHC. This high-luminosity LHC (HL-LHC) implies an annual luminosity of about 250–300 fb$^{-1}$ in the second decade of running the LHC. The HL-LHC upgrade is also required to implement modifications to elements in the insertion regions of the machine, whose performance will have deteriorated because of radiation effects, such as the inner triplet quadrupole magnets. The HL-LHC upgrade is scheduled for the 2021/2022 long shutdown.
— LHC detector R&D and upgrades to make optimal use of the LHC luminosity.

This strategy is also driven by the necessity to bring the LHC injector chain and the technical and general infrastructure up to the high standards required for a world laboratory in order to ensure reliable operation of the CERN complex.

2. The way forward and the European strategy for particle physics

The LHC will provide a first indication of any new physics at energies of the TeV scale. Many of the questions left open by the LHC and its upgrades may be addressed best by an electron–positron collider, based on technology developed by the Compact Linear Collider (CLIC) (http://clic-study.web.cern.ch/CLIC-Study/) and the International Linear Collider (ILC) (http://www.linearcollider.org/) collaborations. Moreover, the option of a high-energy electron–proton collider, the Large Hadron–Electron Collider (LHeC) (http://lhec.web.cern.ch/lhec), is being considered for the high-precision study of quantum chromodynamics and of high-density matter.

Great opportunities are in store at the TeV scale and a fuller understanding of Nature will come about through a clearer insight at this energy level. The development of the Standard Model over the past few decades has advanced through the synergy of hadron–hadron (e.g. SPS and the Tevatron), lepton–hadron (the Hadron Elektron Ring Anlage) and lepton–lepton colliders (e.g. the Large Electron–Positron Collider and the SLAC Linear Collider). Such synergies should be continued in the future and thus a strategy has been developed along these lines. An upgrade to the LHC will provide not only an increase in luminosity delivered to the experiments, but also the occasion to renew the CERN accelerator complex. The ILC could be constructed now, whereas further R&D is needed for CLIC. There is a drive to converge towards a single electron–positron linear collider project. The earlier mentioned effort on accelerators should advance in
Opinion piece. Future of LHC and CERN

991

parallel with the necessary detector R&D. First results from the LHC will be
decisive in indicating the direction that particle physics at the energy frontier
will take in the future.

European particle physics is founded on strong national institutes, universities
and laboratories, working in conjunction with CERN. The increased globalization,
concentration and scale of particle physics require a well-coordinated European
strategy. This process started with the establishment of the CERN Council
Strategy Group, which organized an open symposium in Orsay in early 2006,
a final workshop in Zeuthen in May 2006 and with the strategy document being
signed unanimously by Council in July 2006 in Lisbon [2]. CERN considers
experiments at the high-energy frontier to be the premier physics priority for the
coming years. This direction for future colliders at CERN follows the priorities set
in the strategy document. The European Strategy for Particle Physics includes
several other key areas of research, all in line with the plans of CERN for
the future directions. The start of the LHC physics exploitation is leading to
important input for the update of the European Strategy for Particle Physics
planned for 2012.

CERN Council opened the door to greater integration in particle physics when
it recently unanimously adopted the recommendations to examine the role of
CERN in the light of increasing globalization in particle physics. The key points
agreed by Council include: (i) all states shall be eligible for CERN membership,
irrespective of their geographical location; (ii) a new associate membership status
is to be introduced to allow non-member states to establish or intensify their
institutional links with CERN; and (iii) the participation of CERN in global
projects is to be enabled wherever they are sited.

3. Future high-energy linear colliders

(a) The Compact Linear Collider

The conceptual lay-out of CLIC is based on using lower-energy electron beams
to drive high-energy beams (figure 3). The fundamental principle is that of
a conventional AC transformer. The lower-energy drive beam serves as a
radiofrequency (RF) source that accelerates the high-energy main beam with a
high accelerating gradient. The nominal centre-of-mass energy is up to 3 TeV, the
luminosity exceeds 10^{34} cm$^{-2}$ s$^{-1}$, the main linear accelerator frequency is 12 GHz,
the accelerating gradient is 100 MeV m$^{-1}$ and the total length of the main linear
accelerators is 48.3 km.

CLIC requires more R&D. In particular, the target accelerating gradient is
considerably high and requires very aggressive performance from the accelerating
structures. The nominal CLIC accelerating gradient has been exceeded in an
unloaded structure with a very low breakdown probability of less than 3×10^{-7}
per metre after RF conditioning for 1200 h.

The mandate of the CLIC team is to demonstrate the feasibility of the CLIC
concept by the year 2012 in a conceptual design report. If this effort is successful,
and if the new physics revealed by the LHC warrants, the next phase of R&D on
engineering and cost issues will be launched. This would serve as the basis for a
technical design report and a later request for project approval.
Figure 3. CLIC general lay-out. (Online version in colour.)

(b) The International Linear Collider

The ILC, which is an option for a linear electron–positron collider at lower energies than CLIC, is based on a more conventional design for acceleration using superconducting standing wave cavities, with a nominal accelerating field of 31.5 MeV m$^{-1}$ and a total length of 31 km at 500 GeV centre-of-mass energy and upgradable to around 1 TeV. A two-stage technical design phase during 2010–2012 is presently under way. A major contribution from Europe and from DESY to the ILC global design effort is the European X-ray Laser Project XFEL at DESY. The purpose of the facility is to generate extremely brilliant and ultra-short pulses of spatially coherent X-rays. The electron energy is brought up to 20 GeV through a superconducting linear accelerator, whose length is one-tenth that of the ILC superconducting linear accelerator, and conveyed to long undulators, where the X-rays are generated and delivered to the experimental stations. The XFEL construction has started and the aim is to have the first operation in 2015.

The strategy to address key issues common to both linear colliders involves close collaboration between ILC and CLIC. Recent progress has been encouraging in this respect and common meetings between ILC and CLIC are being held regularly.

(c) Detector challenges

R&D on key components of the detector for a linear collider is mandatory and also well under way. High-precision measurements demand a new approach to the reconstruction. Particle flow, namely reconstruction of all particles, is thus proposed requiring unprecedented granularity in all three dimensions of the detectors.

Phil. Trans. R. Soc. A (2012)
4. Key messages

Particle physics will need to adapt to the evolving situation. Facilities for high-energy physics (as for other branches of science) are becoming larger and more expensive. Funding is not increasing and the time scale for projects is becoming longer, both factors resulting in fewer facilities being realized. Moreover, many laboratories are changing their missions.

All this leads to the need for more coordination and more collaboration on a global scale. Expertise in particle physics needs to be maintained in all regions, ensuring long-term stability and support throughout. It will be necessary to engage all countries with particle physics communities and to integrate the communities in the developing countries. The funding agencies should in their turn provide a global view, and synergies between various domains of research, such as particle physics and astroparticle physics, should be exploited.

Particle physics is now entering a new era. The start-up of the LHC allows particle physics experiments at the highest collision energies. The expectations from the LHC are great, as it could provide revolutionary advances in the understanding of the microcosm and a fundamental change to our view of the early Universe. Because of the location of the LHC, CERN is in a unique position to contribute to further understanding in particle physics in the long term.

Results from the LHC will guide the way in particle physics for many years. It is expected that the period of decision enabling concerning the energy frontier will be in the next few years. Particle physics is now in an exciting period of accelerator planning, design, construction and running, and will need intensified efforts in R&D and technical design work to enable the decisions for the future course. Global collaboration, coupled with stability of support over long time scales, is mandatory.

The particle physics community needs to define now the most appropriate organizational form and needs to be open and inventive in doing so, and there should be a dialogue between scientists, funding agencies and governments. It is mandatory to have accelerator laboratories in all regions as partners in accelerator development, construction, commissioning and exploitation. Furthermore, planning and execution of high-energy physics projects today require worldwide partnerships for global, regional and national projects, i.e. for the whole particle physics programme. The exciting times ahead should be used to establish such partnerships.

5. Conclusions

In this paper, I have provided a description of the driving factors for the LHC physics programme and for future proton and lepton colliders. In the coming years, the ordered priorities are the full exploitation of the LHC, together with the preparation for a possible luminosity upgrade and the consolidation and optimization of the CERN infrastructure and the LHC injectors. It will be necessary to keep under review the physics drivers for future proton accelerator options, and it will be necessary to compare the physics opportunities offered
by proton colliders with those available at a linear electron–positron collider and
electron–proton collider.

The author thanks the organizers for the invitation to make this contribution and for the excellent
organization of the very interesting conference, which included first results from the LHC. He also
thanks Emmanuel Tsesmelis for his assistance in preparing this manuscript.

References

Report.html.