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494 R. V. SOUTHW ELL AND OTHERS ON RELAXATION

The corresponding value of A was 19*7200 as before—an obvious consequence of the 
symmetries possessed by a and by the assumed mode; but for this value the residual 
forces had the sign of the change in density, i.e. of xy. With very little labour, point 
relaxation led to the altered mode of figure 2 (in which fine lines give, for comparison,

Figure 1

contours from figure 1). As was to be expected, the denser parts of the membrane 
deflect more, the lighter parts less than before. The finally accepted value of A was 
19*5661, and it seems safe to conclude (on the basis of our result for Example 1) that 
the true value lies between 19*54 and 19*60 (it was to be expected that the value would 
be lower in this example). For practical purposes this is more than sufficient accuracy.
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METHODS APPLIED TO ENGINEERING PROBLEMS 495

Figure 2

II. T w o -dimensional electromagnetic oscillations

WHICH ARE GOVERNED BY AN ANALOGOUS EQUATION

The governing equations
12. In this section it will be shown that some practically important types of electro­

magnetic oscillation (our example has some interest in relation to the design of electron 
tubes) are governed by an equation having the form of (1), therefore can be investigated 
(with an accuracy sufficient for normal requirements) by the technique of the preceding 
section.
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496 R. V. SOUTHW ELL AND OTHERS ON RELAXATION

In free space, the components Hxi Hy, Hzof the magnetic field strength H  and the 
components Ex, Ey, Ezof the electric field strength are related by Maxwell’s equations

and

el ( 4 , £ „ , £ J = | »B,\ (dHx dHz\
1 dy ‘  dz r [dz ' "  dx r \dx

{dEz

ns 1 1 (dE, / S _
\ h dz r [dz  " dx J 3 \ dx

M l  
~ h r
dA
h

( 12)

in which e and y  denote respectively the dielectric constant and the permeability.* 
When everything is invariant with respect to z, the first three of these equations sim­
plify to

Ez) —

and the last three simplify to

- / * f a \ H x>H y> H z )

dHz II (M y dHx\
dy 3 dx ’ \ dx h r

dEz dEz (dEy J A \
- d y 3 dx 3 \ dx h

(13)

(14)

We may distinguish (and superpose in any proportions) two particular solutions of 
(13) and (14): an ‘electric’ type of oscillation, or 6E-wave’, in which Hz — 0; and a 
‘ magnetic ’ type of oscillation, or 6 H-wave ’, in which Ez = 0. In  the (two-dimensional)
6 E-wave ’

and

in the 6 E-wave ’ 

and

E . - E ,  = 0, d p dHy dHx 1
dtE* ~ dx dy 3

dEz j r
- dy dx ' j

4 h >

dl i
dy '

I <
Sj L* I !

dx dy
dHz
dx

(15)

(16)

Eliminating Hx) Hy from (15), we have

(17)

and eliminating E„ Eyfrom (16), we have

so that on the assumption that Eor oc sin fe), we have

V2] — 0,

replacing (17), and an exactly similar equation in Hz.
* On this notation cf. Llewellyn 1941, Chap. 1.

(18)

( 19)
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METHODS APPLIED TO ENGINEERING PROBLEMS 497

Again, I denoting the c wave-length ’ of the oscillation, we have

p — 2ttc/Z,

where cdenotes the velocity of light; also

e/r — 1 /c2.

Hence we obtain, finally, equations of the form of (I), viz.

[V2+A] 0/
where, in this electromagnetic application,

• ( 22)

(20)

(21)

. 47r2

13. The boundary conditions, on the other hand, differ for the two kinds of wave 
as occurring in a cylindrical conductor with axis directed along On the con­
ducting surface the electric field-strength can have no gradient,* therefore must 
vanish and the boundary condition for the c wave' is of the kind which we considered 
in our acoustical Section I. But in the 6 //-wave ’ the same requirement demands that

v denoting the normal to the conducting surface; and hence, according to (16), we have

i.e. the normal gradient of Hz must vanish at the boundary.

Examples 3 and 4. Resonator system of a Klystron tube
14. We now consider natural modes and frequencies for a conducting tube having 

the cross-section indicated in figure 3—an example typifying the resonator system of a 
6Klystron tube’. In the actual tube, an electron beam passes in the direction of the 
arrow, and electromagnetic oscillations are excited in the resonator (or may be taken 
out of it) with the help of the coupling loop (C. L.). There are several design problems 
which solutions such as follow can help to solve,—e.g. gap position, gap width or 
distance (e) for maximum efficiency. For design it is important to know the position 
of the current nodes in the internal surface, also how big the coupling loop must be 
made, and where placed, to embrace a maximum amount of flux with minimum 
surface loss.

Obviously energy can be given up or taken out by an electron beam only if an electric 
field is built up in the direction of the axis marked by an arrow, and this consideration 
focuses practical interest on the ‘H-wave’. Since an electric field is required, the 
x-axis must be a nodal line for Hz. Our main concern is to know the lowest frequency

Ey cos (2, v) —Ex sin (2, — 0,

(23)

* The conductivity, as is usual, is treated as infinite.
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Figure 4
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METHODS APPLIED TO ENGINEERING PROBLEMS 499

of oscillation under these conditions. We neglect the space charge and the magnetic 
screening effect of the electron beam itself.

15. Interest thus attaches by analogy to the modes of free vibration, having a nodal 
line along Ox,of a membrane bounded by the surface in figure 3, and subject
at that surface to the boundary condition

A - O -  l24)

The system of course is capable of vibration in an indefinite number of different modes, 
and practical considerations will indicate which are of special interest. Usually interest 
centres in the gravest mode of the type described. Figure 4 presents the relaxation 
solution of this problem (example 3), performed by D. N. de G. A.

t
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Figure 5

16. On account of the symmetry about Oy in figure 3 it was evident that the modes 
would fall into two classes, the first symmetrical and the second antisymmetical about 
this line. Example 3 relates to the gravest mode of the first class: a similar computation 
for the gravest mode of the second class (example 4) was undertaken by H. M. with 
results which are presented in figure 5.

Vol. 239. A 61
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500 R. V. SOUTHW ELL AND OTHERS ON RELAXATION M ETHODS

There is little in the two solutions that calls for notice from a computational stand­
point, and discussion of electrical aspects is reserved. All contours meet the conducting 
surface orthogonally, in virtue of the condition (24). The values 0-6190 in example 3, 
2-582 in example 4, were obtained for AL2, A being defined as in (22), and having the 
significance shown in figure 3.

We acknowledge with gratitude help received from Miss G. Vaisey, in the con­
struction of contours, and from M r F. S. Shaw, in the preparation of diagrams for 
reproduction.
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